全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Investigation of Energy Storage Systems, Its Advantage and Requirement in Various Locations in Australia

DOI: 10.1155/2013/835309

Full-Text   Cite this paper   Add to My Lib

Abstract:

Storage minimizes the intermittent nature of renewable sources. Solar and wind are the two fostered source of renewable energy. However, the availability of useful solar radiation and wind speed varies with geographical locations, and also the duration of this energy sources varies with seasonal variation. With the available vast open land and geographical position, Australia has great potential for both solar and wind energies. However, both these sources require energy buffering to support load demand to ensure required power quality. Electricity demand is increasing gradually, and also Australia has target to achieve 20% electricity from renewable sources by 2020. For effective utilization of solar and wind energy potential location of these sources needs to be identified, and effective size of storage needs to be estimated for best utilization according to the load demand. Therefore this paper investigated wind speed and solar radiation data of 210 locations in Australia, identified the potential locations, and estimated required storage in various potential locations to support residential load demand. Advantages of storage were analyzed in terms of loading on distribution transformer and storage support during energy fluctuation from renewable energy. Further analysis showed that storage greatly reduces greenhouse gas emission and reduces overall cost of energy by maximizing the use of solar and wind energies. 1. Introduction Storage significantly adds flexibility in renewable energy (RE) by minimizing intermittent nature of RE, also improves energy management. Solar and wind are the two most endorsed source of RE in recent years. However due to natural factors these sources cannot provide steady energy for the whole day and introduce potential unbalance in energy generation and demand. Australia is one of best places for these sources although level of solar radiation and wind speed varies from location to location. Therefore proper investigation is required to know the potential locations and required PV or wind turbine or storage capacity for certain RE application. Electricity generation varies with the variation of solar radiation, wind speed and duration of these sources. Therefore to maximize the use of RE, properly sized storage needs to be added with designed solar or wind system. Presently installed most of the solar PV systems are intended to support the residential load and that are also connected with the distribution network (DN). However load profile and the electricity generation profile does not synchronize most of the time which

References

[1]  Department of Resources, Energy and Tourism, Energy in Australia 2010, Department of Resources, Energy and Tourism, Australia, 2010.
[2]  Queensland-Government, “The Queensland renewable energy plan, a clear energy future for Queensland,” 2009, http://www.cleanenergy.qld.gov.au/queensland_renewable_energy_plan.cfm.
[3]  T. Lambert, “How HOMER calculates the PV array power output, Software,” 2007, http://homerenergy.com/.
[4]  A. M. A. Haidar, P. N. John, and M. Shawal, “Optimal configuration assessment of renewable energy in Malaysia,” Renewable Energy, vol. 36, no. 2, pp. 881–888, 2011.
[5]  D. S. T. Burton, N. Jenkins, and E. Bossanyi, Wind Energy Handbook, John Wiley and Sons, New York, NY, USA, 2001.
[6]  P. Denholm and M. Hand, “Grid flexibility and storage required to achieve very high penetration of variable renewable electricity,” Energy Policy, vol. 39, no. 3, pp. 1817–1830, 2011.
[7]  C. Wessells and Stanford University News, “Nanoparticle electrode for batteries could make large-scale power storage on the energy grid feasible,” 2011, http://news.stanford.edu/news/2011/november/longlife-power-storage-112311.
[8]  Queensland Energy Management Plan, Department of Employment, Economic Development and Innovation, Queensland Government, May 2011, http://rti.cabinet.qld.gov.au/documents/2011/may/qld%20energy%20management%20plan/Attachments/Qld%20Energy%20Mgt%20Plan.pdf.
[9]  A. Oudalov, T. Buehler, and D. Chartouni, “Utility scale applications of energy storage,” in Proceedings of the IEEE Energy 2030 Conference (ENERGY '08), Atlanta, Ga, USA, November 2008.
[10]  E. Hittinger, J. F. Whitacre, and J. Apt, “Compensating for wind variability using co-located natural gas generation and energy storage,” Energy Systems, vol. 1, no. 4, pp. 417–439, 2010.
[11]  P. F. Ribeiro, B. K. Johnson, M. L. Crow, A. Arsoy, and Y. Liu, “Energy storage systems for advances power applications,” Proceedings of the IEEE, vol. 89, no. 12, pp. 1744–1756, 2001.
[12]  D. Connolly, The Integration of Fluctuating Renewable Energy using Energy Storage [Ph.D. thesis], Department of Physica and Energy, University of Limerick, December 2010, http://www.dconnolly.net/files/David%20Connolly,%20UL,%20Energy%20Storage%20Techniques,%20V3.pdf.
[13]  E. Caama?o, D. Suna, J. Thornycroft et al., “Utilities experience and perception of PV distributed generation,” 2007, http://www.pvupscale.org/IMG/pdf/WP4_D4-2_Utilities-Experience-PVDG_v5.pdf.
[14]  “Technology Comparitions,” European Wind Energy Association (EWEA), 2012, http://www.ewea.org/fileadmin/ewea_documents/documents/press_releases/2009/GWEC_Press_Release_-_tables_and_statistics_2008.pdf.
[15]  RETScreen, “NASA Surface meteorology and solar energy,” 2011, http://eosweb.larc.nasa.gov/sse/RETScreen.
[16]  G. M. Shafiullah, A. M. Than Oo, A. B. M. Shawkat Ali, D. Jarvis, and P. Wolfs, “Prospects of renewable: a feasibility study in the Australian context,” Renewable Energy, vol. 39, no. 2012, pp. 183–197, 2011.
[17]  IEEE, “IEEE recommended practice for sizing lead-acid batteries for stand-alone photovoltaic (PV) systems,” IEEE Standard 1013, 2007, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4280849.
[18]  IEEE, “IEEE guide for optimizing the performance and life of lead-acid batteries in remote hybrid power systems,” IEEE Std 1561-2007, 2007.
[19]  R. D. DeBlasio and T. S. Basso, “Status on developing IEEE standard P1547 for distributed power resources and electric power systems interconnection,” in Proceedings of the Transmission and Distribution Conference and Exposition (IEEE/PES '01), pp. 941–944, usa, November 2001.
[20]  G. M. Masters, Renewable and Efficient Electric Power Systems, John Wiley and Sons, New York, NY, USA, 2004.
[21]  Energy Matters, “Average household electricity consumption per day in Australia,” 2012, http://www.energymatters.com.au/climate-data/grid-electricity-usage.php.
[22]  A. Thomas, “Photovoltaic planning criteria, Network planning and development distribution planning and capability, Ergon Energy, Australia,” Technical note, 2011.
[23]  G. B. Shrestha and L. Goel, “A study on optimal sizing of stand-alone photovoltaic stations,” IEEE Transactions on Energy Conversion, vol. 13, no. 4, pp. 373–378, 1998.
[24]  BoM, Bureau of Meteorology, Australian Government, http://reg.bom.gov.au/.
[25]  PV LG, “LG Polycrystalline PV Module,” http://futuresustainability.rtrk.com.au/?scid=80507&kw=4858156&pub_cr_id=17164703877.
[26]  Energy Matters, “SMA Sunny Boy 3800W Grid-connected Inverter,” http://www.energymatters.com.au/sma-sunny-boy-3800watt-grid-connect-inverter-p-412.html.
[27]  Origin Energy, “Household peak demand,” http://www.originenergy.com.au/3404/Mt-Stuart-Power-Station.
[28]  M. Taufiqul Arif, A. M. T. Oo, A. B. M. S. Ali, and G. M. Shafiullah, “Impacts of storage and solar photovoltaic on the distribution network,” in Proceedings of the Australasian Universities Power Engineering Conference (AUPEC '12), pp. 26–29, Denpasar-Bali, Indonesia, September 2012.
[29]  Bureau of Meteorology, “Weather Data, Bureau of Meteorology, Australian Government,” http://reg.bom.gov.au/.
[30]  HOMER, “Analysis of micro powersystem options,” https://analysis.nrel.gov/homer/.
[31]  PV-Price, “Goodhew electrical and solar,” http://www.goodhewsolar.com.au/customPages/goodhew-electrical-%26-solar-offers-homeowners-the-most-affordable-quality-solar-systems-on-the-market.?subSiteId=1.
[32]  Winturbine_Price, “Ecodirect, clean energy solution, Windturbine price,” http://www.ecodirect.com/Bergey-Windpower-BWC-10kW-p/bergey-windpower-bwc-10kw-ex.htm.
[33]  Red Energy, “Pricing definition for Electricity customers, NSW,” 2011, http://www.redenergy.com.au/docs/NSW-Pricing-DEFINITIONS-0311.pdf.
[34]  Inverter-Cost, “SMA sunny boy 1700 price,” http://www.solarmatrix.com.au/special-offers/sunny-boy-1700?ver=gg&gclid=CMO0gIOzna4CFYVMpgod7T1OHg.
[35]  ALTE-Store, “Battery price, trojan T-105 6V, 225AH (20HR) flooded lead acid battery,” http://www.altestore.com/store/Deep-Cycle-Batteries/Batteries-Flooded-Lead-Acid/Trojan-T-105-6V-225AH-20HR-Flooded-Lead-Acid-Battery/p1771/.
[36]  Ergon Energy, “Electricity tariffs and prices,” http://www.ergon.com.au/your-business/accounts–and–billing/electricity-prices.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413