全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Intelligent Photovoltaic Maximum Power Point Tracking Controller for Energy Enhancement in Renewable Energy System

DOI: 10.1155/2013/901962

Full-Text   Cite this paper   Add to My Lib

Abstract:

Photovoltaic (PV) system is one of the promising renewable energy technologies. Although the energy conversion efficiency of the system is still low, but it has the advantage that the operating cost is free, very low maintenance and pollution-free. Maximum power point tracking (MPPT) is a significant part of PV systems. This paper presents a novel intelligent MPPT controller for PV systems. For the MPPT algorithm, an optimized fuzzy logic controller (FLC) using the Hopfield neural network is proposed. It utilizes an automatically tuned FLC membership function instead of the trial-and-error approach. The MPPT algorithm is implemented in a new variant of coupled inductor soft switching boost converter with high voltage gain to increase the converter output from the PV panel. The applied switching technique, which includes passive and active regenerative snubber circuits, reduces the insulated gate bipolar transistor switching losses. The proposed MPPT algorithm is implemented using the dSPACE DS1104 platform software on a DS1104 board controller. The prototype MPPT controller is tested using an agilent solar array simulator together with a 3?kW real PV panel. Experimental test results show that the proposed boost converter produces higher output voltages and gives better efficiency (90%) than the conventional boost converter with an RCD snubber, which gives 81% efficiency. The prototype MPPT controller is also found to be capable of tracking power from the 3?kW PV array about 2.4 times more than that without using the MPPT controller. 1. Introduction Energy generation based on renewable energy resources has received a great attention. Photovoltaic (PV) system is one of the promising renewable energy technologies. The photovoltaic (PV) generation system is a promising renewable, clean, and environmentally friendly source of energy [1]. Each solar cell produces only about one-half volt of electricity, and dozens of individual solar cells are interconnected in a sealed, weatherproof package called a PV module [2]. PV modules can be connected in series, parallel, or both into what is called a PV array. This PV array is connected to a power conditioner and then to a load or grid tie as a grid connected PV system. In general, the two main problems with PV power generation systems are the low conversion efficiency and that electrical power generated by a typical PV panel varies with weather conditions. Thus, many studies on enhancing the energy-generation efficiency of PV applications have been carried out [3]. A PV generation system should operate at its

References

[1]  T. J. Hammons, J. C. Boyer, S. R. Conners et al., “Renewable energy alternatives for developed countries,” IEEE Transactions on Energy Conversion, vol. 15, no. 4, pp. 481–493, 2000.
[2]  O. Gil-Arias and E. I. Ortiz-Rivera, “A general purpose tool for simulating the behavior of PV solar cells, modules and arrays,” in Proceedings of the 11th IEEE Workshop on Control and Modeling for Power Electronics (COMPEL '08), pp. 1–5, August 2008.
[3]  F. Din?er and M. E. Meral, “Critical factors that affecting efficiency of solar cells,” Smart Grid and Renewable Energy, vol. 1, pp. 47–50, 2010.
[4]  V. Salas, E. Olías, A. Barrado, and A. Lázaro, “Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems,” Solar Energy Materials & Solar Cells, vol. 90, pp. 1555–1578, 2006.
[5]  J. A. R. Hernanz, J. J. C. Martín, I. Z. Belver, J. L. Lesaka, E. Z. Guerrero, and E. P. Pérez, “Modelling of photovoltaic module,” in Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ '10), pp. 1–5, Granada, 2010.
[6]  T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp. 439–449, 2007.
[7]  M. M. Algazara, H. Al-monierb, H. Abd El-halima, and M. E. El Kotb Salem, “Maximum power point tracking using fuzzy logic control,” International Journal of Electrical Power & Energy Systems, vol. 39, no. 1, pp. 21–28, 2012.
[8]  R. Balaji, M. Ramaprabha, and B. L. Mathur, “Maximum power point tracking of partially shaded solar PV system using modified Fibonacci search method with fuzzy controller,” International Journal of Electrical Power & Energy Systems, vol. 43, no. 1, pp. 754–765, 2012.
[9]  N. Patcharaprakiti and S. Premrudeepreechacharn, “Maximum power point tracking using adaptive fuzzy logic control for grid-connected photovoltaic system,” in Proceedings of the IEEE Power Engineering Society Winter Meeting, vol. 1, pp. 372–377, January 2002.
[10]  A. Messai, A. Mellit, A. Guessoum, and S. A. Kalogirou, “Maximum power point tracking using a GA optimized fuzzy logic controller and its FPGA implementation,” Solar Energy, vol. 85, no. 2, pp. 265–277, 2011.
[11]  N. Khaehintung, A. Kunakorn, and P. Sirisuk, “A novel fuzzy logic control technique tuned by particle swarm optimization for maximum power point tracking for a photovoltaic system using a current-mode boost converter with bifurcation control,” International Journal of Control, Automation and Systems, vol. 8, no. 2, pp. 289–300, 2010.
[12]  H. Su and J. Bian, “Maximum power point tracking algorithm based on fuzzy Neural Networks for photovoltaic generation system,” in Proceedings of the International Conference on Computer Application and System Modeling (ICCASM '10), vol. 1, pp. 353–357, October 2010.
[13]  M. K. Kazimierczuk, Pulse-Width Modulated DC-DC Power Converters, John Wiley and Sons, Singapore, 1st edition, 2008.
[14]  R. J. Wai, W. H. Wang, and C. Y. Lin, “High-performance stand-alone photovoltaic generation system,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 240–250, 2008.
[15]  R. J. Wai and W. H. Wang, “Grid-connected photovoltaic generation system,” IEEE Transactions on Circuits and Systems I, vol. 55, no. 3, pp. 953–964, 2008.
[16]  Subiyanto, A. Mohamed, and M. A. Hannan, “Photovoltaic maximum power point tracking controller using a new high performance boost converter,” International Review of Electrical Engineering, vol. 5, no. 6, pp. 2535–2545, 2010.
[17]  Q. Zhao and F. C. Lee, “High-efficiency, high step-up dc-dc converters,” IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 65–73, 2003.
[18]  S. Haykin, Neural Networks A Comprehensive Foundation, Pearson Education, Singapore, 9th edition, 2005.
[19]  J. J. Hopfield and D. W. Tank, “‘Neural’ computation of decisions in optimization problems,” Biological Cybernetics, vol. 52, no. 3, pp. 141–152, 1985.
[20]  A. T. Azar, Fuzzy Systems, Intech, Vukovar, Croatia, 1st edition, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133