全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Investment and Economy Analysis of Water-Source Heat Pump System in Chongqing, China

DOI: 10.1155/2013/574196

Full-Text   Cite this paper   Add to My Lib

Abstract:

In China, the application of renewable energy witnesses rapid development. In the near future, a lot of demonstration projects will be built and thus it is urgent to know the economics of renewable energy building application technologies. Based on the renewable energy demonstration projects in Chongqing city, the author discussed the economy issue of water-source heat pump system (WSHPs) in order to provide suggestions for the application projects. According to the design information of demonstration projects, the average incremental investment, allowance, and payback period are calculated in this paper. Comparing WSHPs with traditional heating, ventilation, and air conditioning (HVAC) system, the saved energy of WSHPs is estimated in the current paper. The author calculated the amount of saved energy in unit applied area and unit intake water. Besides, the economy and efficiency of WSHPs project is analyzed at the end of this paper. 1. Introduction China is an energy consumption power. The shortage of energy resources is a big problem. Nowadays, conventional energy resources cannot meet the current huge energy demand and thus it is urgent to apply renewable energy technologies to solve the problems of energy shortage. In China, about 1/3 of total consumed energy is used in building, and HVAC systems account for more than 50% building energy consumption [1]. Renewable energy building application is a significant way to alleviate the situation in China. Many demonstration projects have been completed and put into operation. The application of WSHPs, seawater heat pump system, and ground source heat pump system becomes a hot topics for researchers. Research is mainly about the application potential, energy efficiency rate, modeling, and performance evaluation [2–4]. In order to promote the application, it is worth studying whether WSHPs is economical or not in a city like Chongqing. Combined with the geological conditions and meteorological parameters, the condition of renewable energy sources as well as the energy saving potential and the energy saving rate [5–8] was analyzed. Tests of the demonstration projects were carried out in Chongqing. Researchers analyzed the economic benefits of the demonstration projects and studied the relationship between the natural source building application and indoor environment [9, 10].The available technologies for energy saving were discussed by various researchers and they suggested to create a database for the application of WSHPs [11]. Experiments were conducted and it was found that WSHPs projects in Chongqing

References

[1]  R. Yao, B. Li, and K. Steemers, “Energy policy and standard for built environment in China,” Renewable Energy, vol. 30, no. 13, pp. 1973–1988, 2005.
[2]  L. Zhen, D. M. Lin, H. W. Shu, S. Jiang, and Y. X. Zhu, “District cooling and heating with seawater as heat source and sink in Dalian, China,” Renewable Energy, vol. 32, no. 15, pp. 2603–2616, 2007.
[3]  Y. Cho and R. Yun, “A raw water source heat pump air-conditioning system,” Energy and Building, vol. 43, no. 11, pp. 3068–3073, 2011.
[4]  J. Liang, Q. Yang, L. Liu, et al., “Modeling and performance evaluation of shallow ground water heat pumps in Beijing plain, China,” Energy and Buildings, vol. 43, no. 11, pp. 3131–3138, 2011.
[5]  L. Zhang, B. Li, and Y. Ding, “Studying on the applications of natural resource in Chongqing,” Building Energy & Environment, vol. 28, no. 6, pp. 42–45, 2009.
[6]  Y. Ding, Y. Jia, B. Li, and A. Montshiwa, “Analysis of integrated efficiency for surface water heat pump system,” in Proceedings of the 11th World Renewable Energy Congress, Abu Dhabi, United Arab Emirates, September 2010.
[7]  Y. Ding, B. Li, S. Jinlong, et al., “The analysis of shallow water for the application of water-source heat pump system in Chongqing,” in Proceedings of the Annual Meeting of Heating Ventilating & Air Conditioning in China, 2008.
[8]  Z.-Y. Wang, X.-Z. Fu, Y. Wang, et al., “Analysis of Yangtze River water as a potential source for developing a water source heat pump in Chongqing,” Journal of Chongqing Jianzhu University, vol. 30, no. 1, pp. 92–95, 2008.
[9]  Y. Ding, B. Li, Q. Luo, et al., “Effect of natural resource on improving indoor thermal environment in Chongqing,” Journal of Chongqing University, vol. 30, no. 9, pp. 127–133, 2007.
[10]  Y. Ding, B. Li, Q. Luo, H. Liu, and M. Liu, “Effect of natural resource on improving indoor thermal environment in Chongqing,” Frontiers of Architecture and Civil Engineering in China, vol. 3, no. 2, pp. 211–218, 2009.
[11]  Y. Rongliang, J. Wenchao, Y. Ding, et al., “The available technologies for building energy saving in Chongqing,” Building Application of Renewable Energy, vol. 16, pp. 24–25, 2009.
[12]  J.-H. Chen, M. Liu, S.-X. Wu, Y. Liu, Y. Fan, and D.-X. Lai, “Performance analysis of water-intaking mode for lake-source heat pump air-conditioning system,” Journal of Hunan University, vol. 36, no. 2, pp. 79–83, 2009.
[13]  Y. Ding, Y.-Y Su, B. Li, et al., “The basic parameters obtained for design of ground source heat pump,” in Proceedings of the International Conference on E-Product E-Service and E-Entertainment (ICEEE '10), pp. 1–6, November 2010.
[14]  B. Li, J. Zunfeng, Y. Ding, et al., “Basic database for applications of river source heat pump in Chongqing,” Heating Ventilating and Air Conditioning, vol. 41, no. 1, pp. 95–98, 2011.
[15]  J. Zunfeng, Y. Ding, Y. Jia, et al., “Analysis of river water quality in the application of river source heat pump system,” Journal of Water Resources & Water Engineering, vol. 21, no. 6, pp. 53–56, 2010.
[16]  Y. Ding and J. Zunfeng, “Analysis of river water temperature in the application of water-source heat pump system,” Water & Waste Water Engineering, vol. 36, no. 9, pp. 166–170, 2010.
[17]  C. R. Lloyd and A. S. D. Kerr, “Performance of commercially available solar and heat pump water heaters,” Energy Policy, vol. 36, no. 10, pp. 3807–3813, 2008.
[18]  Y. Xiaoping, F. Xiangzhao, X. Yimin, and L. Zhenguo, HVAC system design EER analysis of office, market, hotel building in Chongqing, Chongqing University, 2006.
[19]  B. Li, Y. Zhang, Y. Ding, and Y. Tan, “Status analysis of public energy management in Chongqing,” Heating Ventilating & Air Conditioning, vol. 40, no. 9, pp. 112–117, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413