全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Moisture Sorption Characteristics of Corn Stover and Big Bluestem

DOI: 10.1155/2013/939504

Full-Text   Cite this paper   Add to My Lib

Abstract:

Moisture content is an important feedstock quality in converting it into energy through biochemical or thermochemical platforms. Knowledge of moisture sorption relationship is useful in drying and storage to preserve the quality of feedstocks. Moisture sorption isotherms for potential feedstocks such as corn stover and big bluestem are missing. EMC values of corn stover and big bluestem were determined using static gravimetric technique with saturated salt solutions (ERH 0.12–0.89) at different temperatures (20, 30, and 40°C). Depending upon the ERH values, EMC values were ranged from 8.0 to 19.6 and 8.8 to 19.2% db for corn stover and big bluestem, respectively, and they followed typical type II isotherm found in food materials. Nonlinear regression was used to fit five commonly used three-parameter isotherm models (i.e., modified Oswin model, modified Halsey model, modified Chung-Pfost model, modified Henderson model, and the modified Guggenheim-Anderson-de Boer (GAB) model) to the experimental data. Modified Halsey emerged as the best model with high -statistic and values with low and and fairly random scattered residual plot for corn stover and big bluestem. These models can be used to predict the equilibrium moisture content of these feedstocks starting from harvesting, drying, preprocessing, transportation, storage, and conversion. 1. Introduction The search for a renewable fuel resource has become a global priority due to obvious reasons such as declining fossil fuel resources and economic and environmental concerns. According to Demirbas [1], lignocellulosic biomass appears to be an attractive feedstock due to its renewability, positive environmental impacts resulting in no net release of carbon dioxide, and very low sulfur content, and they are cheap (compared to corn/sugarcane) and abundant [2]. Corn stover is considered as one of the potential feedstock and most studied materials towards biofuel too. Perlack et al. [3] estimated that approximately 256 million dry tons of corn stover will be available for conversion into fuel in the year 2030 due to collection technologies improvement and a steady yield increase. Several studies have shown that big bluestem has a great potential as a feedstock in the biofuel arena harvest years [4–6]. Moreover, the United States Department of Energy has also listed big bluestem as one of the herbaceous energy crops. Based on the previous facts, corn stover and big bluestem were selected for this study. Moisture content is an important attribute of feedstocks in converting them in biochemical or thermochemical

References

[1]  A. Demirbas, “Emission characteristics of gasohol and diesohol,” Energy Sources, vol. 31, no. 13, pp. 1099–1104, 2009.
[2]  L. R. Lynd, W. H. Van Zyl, J. E. McBride, and M. Laser, “Consolidated bioprocessing of cellulosic biomass: an update,” Current Opinion in Biotechnology, vol. 16, no. 5, pp. 577–583, 2005.
[3]  R. D. Perlack, L. L. Wright, A. F. Turhollow, R. L. Graham, B. J. Stokes, and D. C. Erbach, “Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply,” 2005, http://www.osti.gov/bridge.
[4]  J. G. Jung and K. P. Vogel, “Lignification of switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) plant parts during maturation and its effect on fiber degradability,” Journal of the Science of Food and Agriculture, vol. 59, no. 2, pp. 169–176, 1992.
[5]  P. G. Jefferson, W. P. McCaughey, K. May, J. Woosaree, and L. McFarlane, “Potential utilization of native prairie grasses from western Canada as ethanol feedstock,” Canadian Journal of Plant Science, vol. 84, no. 4, pp. 1067–1075, 2004.
[6]  P. J. Weimer and T. L. Springer, “Fermentability of eastern gamagrass, big bluestem and sand bluestem grown across a wide variety of environments,” Bioresource Technology, vol. 98, no. 8, pp. 1615–1621, 2007.
[7]  A. Arabhosseini, W. Huisman, and J. Müller, “Modeling of the equilibrium moisture content (EMC) of Miscanthus (Miscanthus × giganteus),” Biomass and Bioenergy, vol. 34, no. 4, pp. 411–416, 2010.
[8]  C. Igathinathane, A. R. Womac, L. O. Pordesimo, and S. Sokhansanj, “Mold appearance and modeling on selected corn stover components during moisture sorption,” Bioresource Technology, vol. 99, no. 14, pp. 6365–6371, 2008.
[9]  A. Assarsson, “Some reactions during chip storage and how to control them,” Pulp and Paper Magazine of Canada, vol. 70, no. 18, pp. 74–79, 1969.
[10]  J. Nurmi, “The storage of logging residue for fuel,” Biomass and Bioenergy, vol. 17, no. 1, pp. 41–47, 1999.
[11]  R. N. Singh, “Equilibrium moisture content of biomass briquettes,” Biomass and Bioenergy, vol. 26, no. 3, pp. 251–253, 2004.
[12]  D. Nilsson, B. Svennerstedt, and C. Wretfors, “Adsorption equilibrium moisture contents of flax straw, hemp stalks and reed canary grass,” Biosystems Engineering, vol. 91, no. 1, pp. 35–43, 2005.
[13]  A. Chakraverty, Post Harvest Technology of Cereals, Pulses and Oil Seeds, Culcutta: Oxford & IBH Publishing Company, 3rd edition, 1981.
[14]  C. Skaar, Wood Water Relations, Springer, New York, NY, USA, 1988.
[15]  I. D. Hartley and S. Avramidis, “Water clustering phenomenon in two softwoods during adsorption and desorption processes,” Journal of Wood Science, vol. 13, no. 4, pp. 467–472, 1994.
[16]  D. Choudhury, J. K. Sahu, and G. D. Sharma, “Moisture sorption isotherms, heat of sorption and properties of sorbed water of raw bamboo (Dendrocalamus longispathus) shoots,” Industrial Crops and Products, vol. 33, no. 1, pp. 211–216, 2011.
[17]  N. Arslan and H. To?rul, “Moisture sorption isotherms for crushed chillies,” Biosystems Engineering, vol. 90, no. 1, pp. 47–61, 2005.
[18]  R. Moreno, G. Antolín, A. Reyes, and P. Alvarez, “Drying characteristics of forest biomass particles of Pinus radiata,” Biosystems Engineering, vol. 88, no. 1, pp. 105–115, 2004.
[19]  J. Jorgenson, P. Gilman, and A. Dobos, “Technical manual for the SAM biomass power generation model,” Tech. Rep. NREL/TP-6A20-52688, National Renewable Energy Laboratory Golden, Colo, USA.
[20]  N. A. Aviara, O. O. Ajibola, O. A. Aregbesola, and M. A. Adedeji, “Moisture sorption isotherms of sorghum malt at 40 and 50°C,” Journal of Stored Products Research, vol. 42, no. 3, pp. 290–301, 2006.
[21]  S. Rahman, “Water activity and sorption properties of food,” in Food Properties Handbook, pp. 1–86, CRC Press, Boca Raton, Fla, USA, 1995.
[22]  S. Arnosti, J. T. Freire, D. J. M. Sartori, and M. A. S. Barrozo, “Equilibrium moisture content of Brachiaria brizantha,” Seed Science and Technology, vol. 27, no. 1, pp. 273–282, 1999.
[23]  L. N. Bell and T. P. Labuza, Moisture Sorption Practical Aspects of Isotherm Measurement and Use, American Association of Cereal Chemists, St. Paul, Minn, USA, 2000.
[24]  S. Gal, “Recent developments in techniques for obtaining complete sorption isotherms,” in Water Activity: Influence on Food Quality, L. B. Rockland and G. F. Stewart, Eds., Academic Press, New York, NY, USA, 1981.
[25]  W. E. L. Speiss and W. Wolf, “Critical evaluation of methods to determine moisture sorption isotherms,” in Water Activity, Theory and Applications To Foods, L. B. Rockland and L. R. Beuchat, Eds., pp. 215–233, Marcel Dekker, New York, NY, USA, 1987.
[26]  P. P. Lewicki and W. Pomaranska-Lazuka, “Errors in static desiccator method of water sorption isotherms estimation,” International Journal of Food Properties, vol. 6, no. 3, pp. 557–563, 2003.
[27]  C. C. Chen and R. V. Morey, “Equilibrium relativity humidity (ERH) relationships for yellow-dent corn,” Transactions of the American Society of Agricultural Engineers, vol. 32, no. 3, pp. 999–1006, 1989.
[28]  F. J. Zink, “Equilibrium moistures of some hays,” Agricultural Engineering, vol. 16, no. 11, pp. 451–452, 1935.
[29]  S. T. Dexter, W. H. Sheldon, and D. I. Waldron, “Equilibrium moisture content of alfalfa hay,” Agricultural Engineering, vol. 28, no. 7, pp. 295–296, 1947.
[30]  A. K. Duggal and W. E. Muir, “Adsorption equilibrium moisture content of wheat straw,” Journal of Agricultural Engineering Research, vol. 26, no. 4, pp. 315–320, 1981.
[31]  C. Igathinathane, A. R. Womac, S. Sokhansanj, and L. O. Pordesimo, “Sorption equilibrium moisture characteristics of selected corn stover components,” Transactions of the American Society of Agricultural Engineers, vol. 48, no. 4, pp. 1449–1460, 2005.
[32]  Z. Pakowski, B. Krupinska, and R. Adamski, “Prediction of sorption equilibrium both in air and superheated steam drying of energetic variety of willow Salix viminalis in a wide temperature range,” Fuel, vol. 86, no. 12-13, pp. 1749–1757, 2007.
[33]  J. Stencl, M. Fajman, P. Sedlak, B. Janstova, J. Kleparnik, and J. Stencl Jr., “Sorption characteristics of amaranthus stems under storage conditions and water activity prediction,” Bioresource Technology, vol. 101, no. 23, pp. 9395–9398, 2010.
[34]  Z. Colley, O. O. Fasina, D. Bransby, and Y. Y. Lee, “Moisture effect on the physical characteristics of switchgrass pellets,” Transactions of the ASABE, vol. 49, no. 6, pp. 1845–1851, 2006.
[35]  I. D. Hartley and L. J. Wood, “Hygroscopic properties of densified softwood pellets,” Biomass and Bioenergy, vol. 32, no. 1, pp. 90–93, 2008.
[36]  O. O. Fasina, “Physical properties of peanut hull pellets,” Bioresource Technology, vol. 99, no. 5, pp. 1259–1266, 2008.
[37]  K. Theerarattananoon, F. Xu, J. Wilson et al., “Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem,” Industrial Crops and Products, vol. 33, no. 2, pp. 325–332, 2011.
[38]  Y. Soysal and S. Oztekin, “Equilibrium moisture content equations for some medicinal and aromatic plants,” Journal of Agricultural Engineering Research, vol. 74, no. 3, pp. 317–324, 1999.
[39]  C. C. Chen and R. V. Morey, “Comparison of four EMC/ERH equations,” Transactions of the American Society of Agricultural Engineers, vol. 32, no. 3, pp. 983–990, 1989.
[40]  D. W. Sun and J. L. Woods, “Moisture content/relative humidity equilibrium relationship of wheat—a review,” Drying Technology, vol. 11, no. 7, pp. 1523–1551, 1993.
[41]  D. W. Sun and J. L. Woods, “The selection of sorption isotherm equations for wheat based on the fitting of available data,” Journal of Stored Products Research, vol. 30, no. 1, pp. 27–43, 1994.
[42]  D. W. Sun and C. Byrne, “Selection of EMC/ERH isotherm equations for rapeseed,” Journal of Agricultural Engineering Research, vol. 69, no. 4, pp. 307–315, 1998.
[43]  J. Stencl and P. Homola, “Water sorption isotherms of leaves and stems of Trifolium pratense L.,” Grass and Forage Science, vol. 55, no. 2, pp. 159–165, 2000.
[44]  C. A. S. Hill, A. Norton, and G. Newman, “The water vapor sorption behavior of natural fibers,” Journal of Applied Polymer Science, vol. 112, no. 3, pp. 1524–1537, 2009.
[45]  C. A. S. Hill, A. Norton, and G. Newman, “The water vapor sorption behavior of flax fibers-analysis using the parallel exponential kinetics model and determination of the activation energies of sorption,” Journal of Applied Polymer Science, vol. 116, no. 4, pp. 2166–2173, 2010.
[46]  Y. Xie, C. A. S. Hill, Z. Jalaludin et al., “The dynamic water vapour sorption behaviour of natural fibres and kinetic analysis using the parallel exponential kinetics model,” Journal of Materials Science, vol. 46, no. 2, pp. 479–489, 2011.
[47]  Y. Xie, C. A. S. Hill, Z. Xiao, Z. Jalaludin, H. Militz, and C. Mai, “Water vapor sorption kinetics of wood modified with glutaraldehyde,” Journal of Applied Polymer Science, vol. 117, no. 3, pp. 1674–1682, 2010.
[48]  Y. Xie, C. A. S. Hill, Z. Xiao, C. Mai, and H. Militz, “Dynamic water vapour sorption properties of wood treated with glutaraldehyde,” Wood Science and Technology, vol. 45, no. 1, pp. 49–61, 2011.
[49]  A. N. Papadopoulos, “Moisture adsorption isotherms of two esterified Greek hardwoods,” Holz als Roh- und Werkstoff, vol. 63, no. 2, pp. 123–128, 2005.
[50]  R. Wimmer and T. Schmid, “Dynamic vapor sorption of analyses of wood—a new approach to classical problems,” in Proceedings of the International Convention of Society of Wood Science and Technology and United Nations Economic Commission for Europe—Timber Committee, Geneva, Switzerland, October 2010.
[51]  A. N. Papadopoulos and C. A. S. Hill, “The sorption of water vapour by anhydride modified softwood,” Wood Science and Technology, vol. 37, no. 3-4, pp. 221–231, 2003.
[52]  G. I. Mantanis and A. N. Papadopoulos, “The sorption of water vapour of wood treated with a nanotechnology compound,” Wood Science and Technology, vol. 44, no. 3, pp. 515–522, 2010.
[53]  Moisture Measurement—Forages ASAE Standards S358. 2, ASABE, St. Joseph, Mich, USA, 2003.
[54]  A. Sluiter, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton, “Determination of Extractives in Biomass,” Tech. Rep. NREL/TP-510-42619, National Renewable Energy Laboratory, Golden, Colo, USA, 2005.
[55]  H. M. Spencer, “Laboratory methods for maintaining constant humidity,” in International Critical Tables of Numerical Data, Physics, Chemistry, and Technology 1, pp. 67–68, McGraw-Hill, New York, NY, USA, 1926.
[56]  C. D. Hodgman, Handbook of Chemistry and Physics, CRC, Cleveland, Ohio, USA, 1955.
[57]  L. Greenspan, “Humidity fixed points of binary saturated aqueous solutions,” Journal of Research of the National Bureau of Standards A, vol. 81, no. 1, pp. 89–96, 1977.
[58]  C. Van den Berg, “Water activity,” in Concentration and Drying of Foods, Q. McCarthy, Ed., pp. 11–36, Elsevier Applied Science Publisher, London, UK, 1985.
[59]  H. B. Pfost, S. G. Mourer, D. S. Chung, and G. A. Milliken, “Summarizing and reporting equilibrium moisture data for grains,” ASAE Paper No. 85-3512, 1976.
[60]  ASAE D245.5, Moisture Relationship of Plant-Based Agricultural Products, American Society of Agricultural Engineers, St. Joseph, Mich, USA, 3rd edition, 1996.
[61]  W. Wolf, W. E. L. Speiss, and G. Jung, “Standardization of isotherm measurements (cost project 90 and 90 bis),” in Properties of Water in Foods in Relation To Quality and Stability, D. Simantos and J. L. Multon, Eds., pp. 661–679, Martinus Nijhoff Publishers, Dordrecht, The Netherlands, 1985.
[62]  C. J. Lomauro, A. S. Bakshi, and T. P. Labuza, “Evaluation of food moisture sorption isotherm equations part II: Milk, coffee, tea, nuts, oilseeds, spices and starchy foods,” Food Science and Technology, vol. 18, no. 2, pp. 118–124, 1985.
[63]  D. S. Jayas and G. Mazza, “Comparison of five three-parameter equations for the description of adsorption data of oats,” Transactions American Society of Agricultural Engineers, vol. 36, no. 1, pp. 119–125, 1993.
[64]  C. Karunanithy, Muthukumarappan, and A. Doenpudi, “Moisture adsorption characteristics of switchgrass and prairie cord grass,” Fuel, vol. 103, pp. 171–178, 2012.
[65]  R. C. Brown, Thermochemical Process of Biomass: Conversion Into Fuels. Chemicals and Power, John Wiley & Sons, 2011.
[66]  W. Yan, T. C. Acharjee, C. J. Coronella, and V. R. Vásquez, “Thermal pretreatment of lignocellulosic biomass,” Environmental Progress and Sustainable Energy, vol. 28, no. 3, pp. 435–440, 2009.
[67]  Y. Soysal and S. ?ztekin, “Comparison of seven equilibrium moisture content equations for some medicinal and aromatic plants,” Journal of Agricultural Engineering Research, vol. 78, no. 1, pp. 57–63, 2001.
[68]  R. Viswanathan, D. S. Jayas, and R. B. Hulasare, “Sorption isotherms of tomato slices and onion shreds,” Biosystems Engineering, vol. 86, no. 4, pp. 465–472, 2003.
[69]  N. Wang and J. G. Brennan, “Moisture sorption isotherm characteristics of potatoes at four temperatures,” Journal of Food Engineering, vol. 14, no. 4, pp. 269–287, 1991.
[70]  ASAE Standards, “Moisture relationships of plant-based agricultural products,” American Society of Agricultural Engineers, vol. 245, pp. 512–528, 1999.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413