Over the years, the production capacity for power generation has not been able to keep pace with the surge in electricity demand in the oil-rich State of Kuwait. To expand its power generation capacity, Kuwait's strategic energy plans focus on constructing gas turbine and fuel oil stations. This paper aimed to evaluate the prospect of photovoltaic solar energy (PV) in generating electricity as an alternative to decrease dependency on combined cycle gas turbine (CCGT) power stations. It applies the LCOE framework to evaluate the economic feasibility of installing a 100?MW PV and CCGT power stations in Kuwait. The results indicate that under the assumption of 5% interest rate, the estimated LCOE of PV station ($0.19/kWh) is unfeasible in comparison to the generation cost of gas turbine station ($0.11/kWh). However, the analysis has emphasized that evaluation of future electricity generation plans must not be limited to the LCOE criteria and should incorporate the following factors: the effect of natural gas supply constraints on the production of gas turbine plants, the environmental concerns of CO2 emissions, the peak load demand, and the domestic energy balance mix. The paper concludes that once these factors are addressed properly, the prospect of PV power stations becomes relatively feasible. 1. Introduction Kuwait is a small rich economy with abundance reserves in fossil fuels. (The GDP in 2010 was around $136.5 billion, and per capita income was estimated to be $48,900, one of the highest in the world. The economy depends heavily on oil exports and revenues. Oil accounts for 50% of GDP, 95% of exports, and 80% of government income.) By the end of 2010, it was estimated that Kuwait had proven crude oil reserves of 104 billion barrels (9% of total world oil reserves), and its reserves of natural gas were around 63 trillion cubic feet (1% of global proved reserves). Kuwait is a major oil exporter (about 2.4 million barrels per day) and a vital member of OPEC. It also produces a modest volume of dry natural gas, approximately 449 billion cubic feet [1]. This small country consumes a massive amount of its natural hydrocarbon resources to meet the rising local demand for electrical power. Since the inception of modern Kuwait in 1961, total consumption of electricity has increased significantly over the years. Total consumption of electricity has increased from 380 million kWh in 1960 to 46,601 million kWh in 2009. The accelerated rise in total electricity consumption was due mainly to the growth of both the per capita consumption and population. In
References
[1]
International Energy Agency, “Kuwait country profile,” 2010, http://www.iea.org/statist/index/.
[2]
M. Ramadhan and A. Naseeb, “The cost benefit analysis of implementing photovoltaic solar system in the state of Kuwait,” Renewable Energy, vol. 36, no. 4, pp. 1272–1276, 2011.
[3]
N. A. Burney, M. Al-Enez, S. Hamada, and W. Awadh, “Peak-load electricity demand in Kuwait,” Economia International, vol. 60, no. 3, pp. 273–290, 2007.
[4]
M. Ramadhan and A. Hussain, “Kuwait energy profile for electrical power generation,” Journal of Strategic Planning for Energy and the Environment, vol. 32, no. 1, pp. 18–25, 2012.
[5]
M. N. Eltony, “The sectoral demand for electricity in Kuwait,” OPEC Review, vol. 19, no. 1, pp. 37–44, 1995.
[6]
N. AL-Mlutairi and N. Burney, “Demand for electricity in Kuwait,” Journal of King Saud University, vol. 7, no. 1, pp. 3–17, 1995.
[7]
http://www.kpc.com.
[8]
International Energy Agency, “The project costs of generating electricity—2010 edition,” Nuclear Energy Agency, OECD, 2010.
[9]
Ministry of Electricity and Water Statistical Yearbook, Ministry of Electricity & Water (MEW), Kuwait City, Kuwait, 2010.
[10]
G. P. Smestad, “The basic economics of photovoltaics for vacuum coaters,” in Proceedings of the 52nd Annual Technical Conference, Santa Clara, Calif, USA, May 2009.
[11]
A. H. Marafia, “Feasibility study of photovoltaic technology in Qatar,” Renewable Energy, vol. 24, no. 3-4, pp. 565–567, 2001.
[12]
S. Kumar and G. N. Tiwari, “Life cycle cost analysis of single slope hybrid (PV/T) active solar still,” Applied Energy, vol. 86, no. 10, pp. 1995–2004, 2009.
[13]
Electrical Energy in Kuwait, Ministry of Electricity & Water (MEW), Kuwait City, Kuwait, 2009.
[14]
Enermodal Engineering Limited, Cost Reduction Study for Solar Thermal Power Plants, The World Bank, 1999.
[15]
German Aerospace Center and Institute of Technical Thermodynamics, “Concentrating solar power for the Mediterranean region,” Federal Ministry for the Environment, Bonn, Germany, 2005, http://www.dlr.de/tt/en/Portaldata/41/Resources/dokumente/institut/system/publications/MED-CSP_complete_study-small.pdf.
[16]
http://www.solarbuzz.com/ModulePrices.htm.
[17]
“GCC demand for gas growing faster than for oil,” 2008, http://www.ameinfo.com/165303.html.
[18]
World Energy Outlook, International Energy Agency (IEA), 2005.
[19]
A. Y. Al-Hasan, A. A. Ghoneim, and A. H. Abdullah, “Optimizing electrical load pattern in Kuwait using grid connected photovoltaic systems,” Energy Conversion and Management, vol. 45, no. 4, pp. 483–494, 2004.
[20]
H. Doukas, K. D. Patlitzianas, A. G. Kagiannas, and J. Psarras, “Renewable energy sources and rationale use of energy development in the countries of GCC: myth or reality?” Renewable Energy, vol. 31, no. 6, pp. 755–770, 2006.