全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Low-Temperature Processing of Titanium Oxide Nanoparticles Photoanodes for Dye-Sensitized Solar Cells

DOI: 10.1155/2013/545212

Full-Text   Cite this paper   Add to My Lib

Abstract:

Using the low-temperature processing of different organofunctional silanes like TEOS, GPTS, and MPTS to incorporate within TiO2 network, dye-sensitized solar cells (DSCs) processed at low temperatures were obtained. The UV-cured MPTS-modified layer exhibited better performance over the TEOS and GPTS, where better mechanical stable layer is achieved in addition to better interconnection between the TiO2 nanoparticles. The J-V characteristics of the DSC composed of silane-based layer showed that the improved cell performance was due to the high photocurrent density accompanied with more dye adsorption and higher charge injection from TiO2 to FTO substrate resulting from the formation of an ohmic contact with the substrate. The highest conversion efficiency attained for MPTS-TiO2 layer cured with UV and followed by heating at 300°C was %, which is 2.8 times better than the GPTS-based layer. 1. Introduction The increasing global demands of clean energy is becoming one of the major scientific challenges for scientists, economists, and politicians [1], as the combustion of fossil foils has produced widespread environmental damage [2]. Therefore, the Sun as an abundant source of energy represents the ideal source of clean energy, which has a solar flux deposited on the surface of the earth within one hour as much as the global power usage. However, the high production cost compared with the fossil foils has retarded the widespread commercialization of this alternative energy. There have been intensive investigations for higher efficiency and cost effective conversion of solar radiation to electricity. Silicon-based solar cell technologies are currently the widely used commercial photovoltaic technology; however, the nonsilicon photovoltaic thin films are a major competitor with less cost and more flexibility than traditional solar cells [3]. One of the most promising technologies is the dye-sensitized solar cells (DSCs), which have attracted much attention as they offer the possibility of extremely inexpensive and efficient solar energy conversion with flexible routes of production. The maximum reported efficiency since the first report published by O’Regan and Gr?tzel in 1991 [4], is with a current record of ~11–13% [5–12]. DSC is a mimic of the photosynthesis and a physical separation between photon absorption and charge percolation process. The light is absorbed by a molecular dye, that is attached to the surface of semiconducting thick layer (10–15?μm) deposited on transparent conducting oxide (TCO) electrode. The excited dye rapidly injects an electron

References

[1]  G. W. Crabtree and N. S. Lewis, “Solar energy conversion,” Physics Today, vol. 60, no. 3, pp. 37–42, 2007.
[2]  R. A. Kerr, “How urgent is climate change?” Science, vol. 318, no. 5854, pp. 1230–1231, 2007.
[3]  R. D. McConnell, “Assessment of the dye-sensitized solar cell,” Renewable and Sustainable Energy Reviews, vol. 6, no. 3, pp. 273–295, 2002.
[4]  B. O'Regan and M. Gr?tzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991.
[5]  Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Japanese Journal of Applied Physics, vol. 45, no. 24–28, pp. L638–L640, 2006.
[6]  M. K. Nazeeruddin, F. De Angelis, S. Fantacci et al., “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” Journal of the American Chemical Society, vol. 127, no. 48, pp. 16835–16847, 2005.
[7]  M. Gr?tzel, “Solar energy conversion by dye-sensitized photovoltaic cells,” Inorganic Chemistry, vol. 44, no. 20, pp. 6841–6851, 2005.
[8]  M. Gr?tzel, “Dye-sensitized solid-state heterojunction solar cells,” MRS Bulletin, vol. 30, no. 1, pp. 23–27, 2005.
[9]  Y. Chiba, A. Islam, R. Komiya, N. Koide, and L. Han, “Conversion efficiency of 10.8% by a dye-sensitized solar cell using a TiO2 electrode with high haze,” Applied Physics Letters, vol. 88, no. 22, Article ID 223505, 2006.
[10]  Z. S. Wang, M. Yanagida, K. Sayama, and H. Sugihara, “Electronic-insulating coating of CaCO3 on TiO2 electrode in dye-sensitized solar cells: improvement of electron lifetime and efficiency,” Chemistry of Materials, vol. 18, no. 12, pp. 2912–2916, 2006.
[11]  M. K. Nazeeruddin, E. Baranoff, and M. Gr?tzel, “Dye-sensitized solar cells: a brief overview,” Solar Energy, vol. 85, no. 6, pp. 1172–1178, 2011.
[12]  A. Yella, H. W. Lee, H. N. Tsao et al., “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science, vol. 334, no. 6056, pp. 629–634, 2011.
[13]  S.-H. Fan, A.-G. Zhang, C. C. Ju, and K.-Z. Wang, “A phenylcarbazole functionalized ruthenium dye for efficient dye-sensitized solar cells,” Solar Energy, vol. 85, no. 10, pp. 2497–2506, 2011.
[14]  L. Guo, X. Pan, C. Zhang et al., “Ionic liquid electrolyte based on S-propyltetrahydrothiophenium iodide for dye-sensitized solar cells,” Solar Energy, vol. 84, no. 3, pp. 373–378, 2010.
[15]  D. Zhao, T. Peng, L. Lu, P. Cai, P. Jiang, and Z. Bian, “Effect of annealing temperature on the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2 nanoparticles,” Journal of Physical Chemistry C, vol. 112, no. 22, pp. 8486–8494, 2008.
[16]  B. Wang and L. L. Kerr, “Dye sensitized solar cells on paper substrates,” Solar Energy Materials and Solar Cells, vol. 95, no. 8, pp. 2531–2535, 2011.
[17]  S.-S. Kim, J. H. Yum, and Y. E. Sung, “Flexible dye-sensitized solar cells using ZnO coated TiO2 nanoparticles,” Journal of Photochemistry and Photobiology A, vol. 171, no. 3, pp. 269–273, 2005.
[18]  F. Pichot, J. R. Pitts, and B. A. Gregg, “Low-temperature sintering of TiO2 colloids: application to flexible dye-sensitized solar cells,” Langmuir, vol. 16, no. 13, pp. 5626–5630, 2000.
[19]  T. Kado, M. Yamaguchi, Y. Yamada, and S. Hayase, “Low temperature preparation of nano-porous TiO2 layers for plastic dye sensitized solar cells,” Chemistry Letters, vol. 32, no. 11, pp. 1056–1057, 2003.
[20]  D. Gutiérrez-Tauste, I. Zumeta, E. Vigil, M. A. Hernández-Fenollosa, X. Domènech, and J. A. Ayllón, “New low-temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar cells using UV irradiation,” Journal of Photochemistry and Photobiology A, vol. 175, no. 2-3, pp. 165–171, 2005.
[21]  T. N. Murakami, Y. Kijitori, N. Kawashima, and T. Miyasaka, “Low temperature preparation of mesoporous TiO2 films for efficient dye-sensitized photoelectrode by chemical vapor deposition combined with UV light irradiation,” Journal of Photochemistry and Photobiology A, vol. 164, no. 1–3, pp. 187–191, 2004.
[22]  N. Al Dahoudi, Wet chemical deposition of transparent conducting coatings made of redispersable crystalline ITO nanoparticles on glass and polymeric substrates [Ph.D. thesis], University of Saarland, Saarbrucken, Germany, 2003.
[23]  I. Maksimenko, M. Gross, T. K?niger, H. Münstedt, and P. J. Wellmann, “Conductivity and adhesion enhancement in low-temperature processed indium tin oxide/polymer nanocomposites,” Thin Solid Films, vol. 518, no. 10, pp. 2910–2915, 2010.
[24]  N. Al Dahoudi, J. Xi, and G. Cao, “Silica modification of titania nanoparticles for dye-sensitized solar cell,” Electrochemica Acta, vol. 59, pp. 32–38, 2012.
[25]  T. P. Chou, Q. Zhang, B. Russo, G. E. Fryxell, and G. Cao, “Titania particle size effect on the overall performance of dye-sensitized solar cells,” Journal of Physical Chemistry C, vol. 111, no. 17, pp. 6296–6302, 2007.
[26]  S. Sepeur, N. Kunze, B. Werner, and H. Schmidt, “UV curable hard coatings on plastics,” Thin Solid Films, vol. 351, no. 1-2, pp. 216–219, 1999.
[27]  E. Ukaji, T. Furusawa, M. Sato, and N. Suzuki, “The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter,” Applied Surface Science, vol. 254, no. 2, pp. 563–569, 2007.
[28]  J. Xi, N. Al Dahoudi, Q. Zhang, Y. Sun, and G. Cao, “Effect of annealing temperature on the performances and electrochemical properties of TiO2 dye-sensitized solar cells,” Science of Advanced Materials, vol. 4, no. 7, pp. 727–733, 2012.
[29]  T. V. Nguyen, H. C. Lee, M. Alam Khan, and O. B. Yang, “Electrodeposition of TiO2/SiO2 nanocomposite for dye-sensitized solar cell,” Solar Energy, vol. 81, no. 4, pp. 529–534, 2007.
[30]  Q. A. Acton, Alloys: Advances in Research and Applications, Scholarly Edition, Atlanta, Ga, USA, 2011.
[31]  G. Philipp and H. Schmidt, “The reactivity of TiO2 and ZrO2 in organically modified silicates,” Journal of Non-Crystalline Solids, vol. 82, no. 1–3, pp. 31–36, 1986.
[32]  N. Serpone and E. Pelizzetti, Photocatalysis: Fundamentals and Applications, Wiley, New York, NY, USA, 1989.
[33]  M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, vol. 95, no. 1, pp. 69–96, 1995.
[34]  J. Van De Lagemaat, N. G. Park, and A. J. Frank, “Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: a study by electrical impedance and optical modulation techniques,” Journal of Physical Chemistry B, vol. 104, no. 9, pp. 2044–2052, 2000.
[35]  Q. Wang, J. E. Moser, and M. Gr?tzel, “Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells,” Journal of Physical Chemistry B, vol. 109, no. 31, pp. 14945–14953, 2005.
[36]  G. Schlichth?rl, S. Y. Huang, J. Sprague, and A. J. Frank, “Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: a study by intensity modulated photovoltage spectroscopy,” Journal of Physical Chemistry B, vol. 101, no. 41, pp. 8141–8155, 1997.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413