全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

AAL Middleware Infrastructure for Green Bed Activity Monitoring

DOI: 10.1155/2013/510126

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper describes a service-oriented middleware platform for ambient assisted living and its use in two different bed activity services: bedsore prevention and sleeping monitoring. A detailed description of the middleware platform, its elements and interfaces, as well as a service that is able to classify some typical user's positions in the bed is presented. Wireless sensor networks are supposed to be widely deployed in indoor settings and on people's bodies in tomorrow's pervasive computing environments. The key idea of this work is to leverage their presence by collecting the received signal strength measured among fixed general-purpose wireless sensor devices, deployed in the environment, and wearable ones. The RSS measurements are used to classify a set of user's positions in the bed, monitoring the activities of the user, and thus supporting the bedsores and the sleep monitoring issues. Moreover, the proposed services are able to decrease the energy consumption by exploiting the context information coming from the proposed middleware. 1. Introduction The last few years have seen research development in the field of ambient assisted living (AAL), which can be defined as concepts, products, and services supporting a healthy and independent life of elderly citizens with intelligent systems that assist them in carrying out their daily activities. AAL encompasses a wide range of applications ranging from tele-monitoring of vital parameters for patients with chronic diseases to scenarios involving home automation and domotics, the recognition of adverse events such as a fall causing a fracture, or specific assistance systems for people with hearing or vision deficits. These researches were focused on network infrastructures, distributed software architectures as well as context information models to support pervasive computing applications in smart environments. The AAL environments leveraging smart devices have the ability to support user’s daily life activities through efficient context evaluation systems that support activities for different users’ requirements. At the same time, application adaptation for these activities is also required in response to changes from the environment. In this regard, the interconnections among components sharing the same context are also relevant. A crucial role in this scenario is played by the middleware infrastructure as it provides the central connection point that is shared by all the components according to the needed information exchanges. A middleware infrastructure provides a set of basic services for the

References

[1]  M. Tentori and J. Favela, “Activity-aware computing for healthcare,” IEEE Pervasive Computing, vol. 7, no. 2, pp. 51–57, 2008.
[2]  A. A. P. Wai, K. Yuan-Wei, F. S. Fook, M. Jayachandran, J. Biswas, and J.-J. Cabibihan, “Sleeping patterns observation for bedsores and bed-side falls prevention,” in Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine (EMBC '09), pp. 6087–6090, September 2009.
[3]  J. Baek, G. Lee, W. Park, and B.-J. Yun, “Accelerometer signal processing for user activity detection,” Knowledge-Based Intelligent Information and Engineering Systems, Springer, vol. 3215, pp. 573–580, 2004.
[4]  A. M. Adami, M. Pavel, T. L. Hayes, and C. M. Singer, “Detection of movement in bed using unobtrusive load cell sensors,” IEEE Transactions on Information Technology in Biomedicine, vol. 14, no. 2, pp. 481–490, 2010.
[5]  H.-Y. Lau, K.-Y. Tong, and H. Zhu, “Support vector machine for classification of walking conditions using miniature kinematic sensors,” Medical and Biological Engineering and Computing, vol. 46, no. 6, pp. 563–573, 2008.
[6]  A. R. Guraliuc, P. Barsocchi, F. Potorti, and P. Nepa, “Limb movements classification using wearable wireless transceivers,” IEEE Transactions on Information Technology in Biomedicine, vol. 15, no. 3, pp. 474–480, 2011.
[7]  P. Barsocchi, “Position recognition to support bedsores prevention,” IEEE Transactions on Information Technology in Biomedicine, vol. 99, p. 1, 2012.
[8]  M. Quwaider and S. Biswas, “Body posture identification using hidden markov model with a wearable sensor network,” in Proceedings of the ICST 3rd International Conference on Body Area Networks (BodyNets '08), pp. 19:1–19:8, 2008.
[9]  P. A. Bernstein, “Middleware: a model for distributed system services,” Communications of the ACM, vol. 39, no. 2, pp. 86–98, 20131996.
[10]  S. Krakowiak, Middleware Architecture with Patterns and Frameworks, INRIA, Rh?ne-Alpes, France, 2007.
[11]  E. Parry and T. Strickett, “The pressure is on—everyone, everywhere, everyday,” in Workshop on ARATA, pp. 589–592, June 2004.
[12]  “National sleep foundation,” http://www.sleepfoundation.org/.
[13]  A. Oksenberg and D. S. Silverberg, “The effect of body posture on sleep-related breathing disorders: facts and therapeutic implications,” Sleep Medicine Reviews, vol. 2, no. 3, pp. 139–162, 1998.
[14]  E. Hoque, R. F. Dickerson, and J. A. Stankovic, “Monitoring body positions and movements during sleep using wisps,” in Wireless Health 2010, pp. 44–53, ACM, New York, NY, USA, 2010.
[15]  S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, “A review of wearable sensors and systems with application in rehabilitation,” Journal of NeuroEngineering and Rehabilitation, vol. 9, p. 21, 2012.
[16]  M.-R. Tazari, F. Furfari, á. Fides-Valero et al., “The universaal reference model for aal,” in Handbook of Ambient Assisted Living: Technology For Healthcare, Rehabilitation and Well-Being, vol. 11 of Ambient Intelligence and Smart Environments, pp. 610–625, IOS Press, 2012.
[17]  U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S - A publish/subscribe protocol for wireless sensor networks,” in Proceedings of the 3rd IEEE/Create-Net International Conference on Communication System Software and Middleware (COMSWARE '08), pp. 791–798, January 2008.
[18]  R. T. Fielding and R. N. Taylor, “Principled design of the modern web architecture,” ACM Transactions on Internet Technology, vol. 2, no. 2, pp. 115–150, 2002.
[19]  “Javascript object notation,” http://www.json.org/.
[20]  L. Atzori, A. Iera, and G. Morabito, “The internet of things: a survey,” Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.
[21]  “Tunstall healthcare,” http://www.tunstall.co.uk/.
[22]  “Cleode embedded systems,” http://www.cleode.fr/.
[23]  “Crossbow technology inc,” http://www.xbow.com/.
[24]  F. Potortì, A. Corucci, P. Nepa, F. Furfari, P. Barsocchi, and A. Buffi, “Accuracy limits of in-room localisation using RSSI,” in Proceedings of IEEE International Symposium on Antennas and Propagation (APSURSI '09), pp. 1–4, June 2009.
[25]  C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995.
[26]  S. R. Gunn, “Support vector machines for classification and regression,” Tech. Rep. 256459, Faculty of Engineering, Science and Mathematics School of Electronics and Computer Science, May 1998.
[27]  M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The weka data mining software: an update,” SIGKDD Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413