Background. Sexually transmitted infections (STIs) continue to be a significant public health problem especially among women of reproductive age in Africa. Methods. A total of 2236 women that had enrolled in the MDP301 vaginal microbicide trial were tested for the presence of Chlamydia trachomatis (CT), Neisseria gonorrhea (NG), Treponema pallidum, and Trichomonas vaginalis (TV). Results. CT was identified as the most prevalent STI (11%) followed by TV (10%), NG, and Syphilis (3%). The highest prevalence of coinfection was reported between T. pallidum and TV (19.67%, ), followed by CT and TV (13.52%, ). Risk factors that were significantly associated with STI acquisition were women of 23 years of age or younger (HR: 1.50, 95% CI 1.17, 1.93), baseline STI with CT (HR: 1.77, 95% CI 1.32, 2.35), TV (HR: 1.58, 95% CI, 1.20, 2.10), and T. pallidum (HR: 5.13, 95% CI 3.65, 7.22), and a low education level (HR: 1.30, 95% CI 1.02, 1.66). Conclusion. Young women with lower education and a history of STIs are at high risk of multiple STIs. Prevention programs should consider target approach to STI prevention among young women. This trial is registered with ISRCTN64716212. 1. Introduction According to the World Health Organization (WHO) 2008 estimates, the total global number of new cases of four of the curable sexually transmitted infections (STIs), Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), Treponema pallidum (Syphilis), and Trichomonas vaginalis (TV), was nearly 500 million cases in adults aged 15 to 49 years (WHO) [1]. In Sub-Saharan Africa alone, 69 million cases of these STIs are reported annually [2]. STIs continue to be a significant public health problem with an increased burden on women of reproductive age [3, 4]. They have been associated with a wide spectrum of complications such as urethritis and epididymitis in men and cervicitis in women [5, 6]; thus the more ascending cervical infections may cause pelvic inflammatory disease and untimely tubal pathology, which increases the risk of ectopic pregnancy, tubal infertility, and chronic abdominal pain [7, 8]. According to the WHO and UNAIDS, STI control programmes have three objectives: to interrupt the transmission of STIs; to prevent the development of diseases, complications, and sequelae; and to reduce the transmission of HIV infection [9]. Treatment for STIs needs to be effective and administered as promptly as possible. The syndromic management approach allows for immediate treatment based on the presentation of signs and symptoms. In South Africa, STIs including human immunodeficiency
References
[1]
WHO, Global Incidence and Prevalence of Selected Curable Sexually Transmitted Infections: Overview and Estimates, WHO, Geneva, Switzerland, 2012.
[2]
R. G. White, “Curable sexually transmitted infection treatment interventions to prevent hiv transmission in sub-saharan africa,” The Open Infectious Diseases Journal, vol. 3, pp. 148–155, 2009.
[3]
G. Rours, R. Verkooyen, W. Hop et al., “Sexually transmitted infections in pregnant urban South-African women: socio-economic characteristics and risk factors,” The Southern African Journal of Epidemiology and Infection, vol. 21, no. 1, pp. 14–19, 2006.
[4]
G. Rours, R. Verkooyen, W. Hop et al., “Consequences for pregnancy outcome and infants,” The Southern African Journal of Epidemiology and Infection, vol. 21, p. 57, 2010.
[5]
J. F. Wilson, “Vaginitis and cervicitis,” Annals of Internal Medicine, vol. 151, no. 5, article ITC3-1, 2009.
[6]
J. Walker, S. N. Tabrizi, C. K. Fairley et al., “Chlamydia trachomatis incidence and re-infection among young women-behavioural and microbiological characteristics,” PloS ONE, vol. 7, Article ID e37778, 2012.
[7]
J. A. Land, J. E. A. M. van Bergen, S. A. Morré, and M. J. Postma, “Epidemiology of Chlamydia trachomatis infection in women and the cost-effectiveness of screening,” Human Reproduction Update, vol. 16, no. 2, pp. 189–204, 2010.
[8]
M. A. Mahmood and A. Saniotis, “Use of syndromic management algorithm for sexually transmitted infections and reproductive tract infections management in community settings in Karachi,” Journal of the Pakistan Medical Association, vol. 61, no. 5, pp. 453–457, 2011.
[9]
P. Mayaud and D. Mabey, “Approaches to the control of sexually transmitted infections in developing countries: old problems and modern challenges,” Sexually Transmitted Infections, vol. 80, no. 3, pp. 174–182, 2004.
[10]
L. Johnson, D. J. Coetzee, and R. E. Dorrington, “Sentinel surveillance of sexually transmitted infections in South Africa: a review,” Sexually Transmitted Infections, vol. 81, no. 4, pp. 287–293, 2005.
[11]
A. Nunn, S. McCormack, A. M. Crook, R. Pool, C. Rutterford, and R. Hayes, “Microbicides Development Programme: design of a phase III trial to measure the efficacy of the vaginal microbicide PRO 2000/5 for HIV prevention,” Trials, vol. 10, article 99, 2009.
[12]
S. McCormack, G. Ramjee, A. Kamali et al., “PRO2000 vaginal gel for prevention of HIV-1 infection (Microbicides Development Programme 301): a phase 3, randomised, double-blind, parallel-group trial,” The Lancet, vol. 376, no. 9749, pp. 1329–1337, 2010.
[13]
S. Mullick, D. Watson-Jones, M. Beksinska, and D. Mabey, “Sexually transmitted infections in pregnancy: prevalence, impact on pregnancy outcomes, and approach to treatment in developing countries,” Sexually Transmitted Infections, vol. 81, no. 4, pp. 294–302, 2005.
[14]
M. Becker, J. Stephen, S. Moses et al., “Etiology and determinants of sexually transmitted infections in Karnataka State, South India,” Sexually Transmitted Diseases, vol. 37, no. 3, pp. 159–164, 2010.
[15]
L. van Damme, “Effectiveness of COL-1492, a nonoxynol-9 vaginal gel, on HIV-1 transmission in female sex workers: a randomised controlled trial,” The Lancet, vol. 360, pp. 971–977, 2002.
[16]
G. G. G. Donders, “Treatment of sexually transmitted bacterial diseases in pregnant women,” Drugs, vol. 59, no. 3, pp. 477–485, 2000.
[17]
H. Swygard, A. C. Se?a, M. M. Hobbs, and M. S. Cohen, “Trichomoniasis: clinical manifestations, diagnosis and management,” Sexually Transmitted Infections, vol. 80, no. 2, pp. 91–95, 2004.
[18]
M. de Jongh, M. Le Roux, A. Adam, A. Caliendo, and A. A. Hoosen, “Co-infection with neisseria gonorrhoeae, Chlamydia trachomatis and Trichomonas vaginalis in symptomatic south african men with urethritis: implications for syndromic management,” 2009, http://hdl.handle.net/2263/14549.
[19]
M. de Jongh, M. R. Lekalakala, M. Le Roux, and A. A. Hoosen, “Risk of having a sexually transmitted infection in women presenting at a termination of pregnancy clinic in Pretoria, South Africa,” Journal of Obstetrics and Gynaecology, vol. 30, no. 5, pp. 480–483, 2010.
[20]
M. T. Faber, A. Nielsen, M. Nyg?rd et al., “Genital chlamydia, genital herpes, Trichomonas vaginalis and gonorrhea prevalence, and risk factors among nearly 70,000 randomly selected women in 4 nordic countries,” Sexually Transmitted Diseases, vol. 38, no. 8, pp. 727–734, 2011.
[21]
E. Monasterio, L. Y. Hwang, and M. Shafer, “Adolescent sexual health,” Current Problems in Pediatric and Adolescent Health Care, vol. 37, no. 8, pp. 302–325, 2007.
[22]
C. Kenyon and M. Badri, “The role of concurrent sexual relationships in the spread of sexually transmitted infections in young South Africans,” Southern African Journal of HIV Medicine, vol. 10, pp. 29–36, 2010.
[23]
S. D. Mehta, E. J. Erbelding, J. M. Zenilman, and A. M. Rompalo, “Gonorrhoea reinfection in heterosexual STD clinic attendees: longitudinal analysis of risks for first reinfection,” Sexually Transmitted Infections, vol. 79, no. 2, pp. 124–128, 2003.
[24]
S. L. Cudmore and G. E. Garber, “Prevention or treatment: the benefits of Trichomonas vaginalis vaccine,” Journal of Infection and Public Health, vol. 3, no. 2, pp. 47–53, 2010.
[25]
M. M. Solomon, M. J. Smith, and C. del Rio, “Low educational level: a risk factor for sexually transmitted infections among commercial sex workers in Quito, Ecuador,” International Journal of STD and AIDS, vol. 19, no. 4, pp. 264–267, 2008.
[26]
N. Low, N. Broutet, Y. Adu-Sarkodie, P. Barton, M. Hossain, and S. Hawkes, “Global control of sexually transmitted infections,” The Lancet, vol. 368, no. 9551, pp. 2001–2016, 2006.