全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Role of Sexually Transmitted Infections in HIV-1 Progression: A Comprehensive Review of the Literature

DOI: 10.1155/2013/176459

Full-Text   Cite this paper   Add to My Lib

Abstract:

Due to shared routes of infection, HIV-infected persons are frequently coinfected with other sexually transmitted infections (STIs). Studies have demonstrated the bidirectional relationships between HIV and several STIs, including herpes simplex virus-2 (HSV-2), hepatitis B and C viruses, human papilloma virus, syphilis, gonorrhea, chlamydia, and trichomonas. HIV-1 may affect the clinical presentation, treatment outcome, and progression of STIs, such as syphilis, HSV-2, and hepatitis B and C viruses. Likewise, the presence of an STI may increase both genital and plasma HIV-1 RNA levels, enhancing the transmissibility of HIV-1, with important public health implications. Regarding the effect of STIs on HIV-1 progression, the most studied interrelationship has been with HIV-1/HSV-2 coinfection, with recent studies showing that antiherpetic medications slow the time to CD4 <200 cells/μL and antiretroviral therapy among coinfected patients. The impact of other chronic STIs (hepatitis B and C) on HIV-1 progression requires further study, but some studies have shown increased mortality rates. Treatable, nonchronic STIs (i.e., syphilis, gonorrhea, chlamydia, and trichomonas) typically have no or transient impacts on plasma HIV RNA levels that resolve with antimicrobial therapy; no long-term effects on outcomes have been shown. Future studies are advocated to continue investigating the complex interplay between HIV-1 and other STIs. 1. Introduction Individuals infected with human immunodeficiency virus-1 (HIV-1) are often coinfected with other sexually transmitted infections (STIs) due to shared routes of transmission. Over the past decade, there has been mounting evidence of the bidirectional relationship between HIV-1 and other STIs. Initially, studies showed that HIV-1-infected persons may be at risk for more frequent and severe forms of STIs as well as poorer treatment outcomes, especially in cases of concurrent herpes simplex virus-2 (HSV-2) and syphilis infection. More recent data have demonstrated that certain concomitant STIs directly affect HIV-1 transmissibility and may alter HIV-1 control and increase progression to AIDS. This review summarizes the current literature regarding the most common STIs (HSV-2, hepatitis B virus, hepatitis C virus, human papilloma virus, syphilis, gonorrhea, chlamydia, and trichomonas) and their impact on HIV-1 progression. 2. Herpes Simplex Virus Type-2 Most persons who are infected with HIV-1 are also infected with HSV-2, with published seropositivity rates of 50–90% [1, 2]. Globally, HSV-2 is the most common cause of

References

[1]  H. Weiss, “Epidemiology of herpes simplex virus type 2 infection in the developing world,” Herpes, vol. 11, supplement 1, pp. 24A–35A, 2004.
[2]  J. S. Smith and N. J. Robinson, “Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review,” Journal of Infectious Diseases, vol. 186, no. 1, pp. S3–S28, 2002.
[3]  R. V. Barnabas and C. Celum, “Infectious co-factors in HIV-1 transmission herpes simplex virus type-2 and HIV-1: new insights and interventions,” Current HIV Research, vol. 10, pp. 228–237, 2012.
[4]  E. E. Freeman, H. A. Weiss, J. R. Glynn, P. L. Cross, J. A. Whitworth, and R. J. Hayes, “Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies,” AIDS, vol. 20, no. 1, pp. 73–83, 2006.
[5]  L. J. Abu-Raddad, A. S. Magaret, C. Celum et al., “Genital herpes has played a more important role than any other sexually transmitted infection in driving HIV prevalence in Africa,” PLoS ONE, vol. 3, no. 5, Article ID e2230, 2008.
[6]  A. L. Cunningham, R. R. Turner, and A. C. Miller, “Evolution of recurrent herpes simplex lesions. An immunohistologic study,” Journal of Clinical Investigation, vol. 75, no. 1, pp. 226–233, 1985.
[7]  J. S. Sheffield, G. D. Wendel Jr., D. D. McIntire, and M. V. Norgard, “Effect of genital ulcer disease on HIV-1 coreceptor expression in the female genital tract,” Journal of Infectious Diseases, vol. 196, no. 10, pp. 1509–1516, 2007.
[8]  N. Nagot, A. Ouédraogo, V. Foulongne et al., “Reduction of HIV-1 RNA levels with therapy to suppress herpes simplex virus,” The New England Journal of Medicine, vol. 356, no. 8, pp. 790–799, 2007.
[9]  D. M. Margolis, A. B. Rabson, S. E. Straus, and J. M. Ostrove, “Transactivation of the HIV-1 LTR by HSV-1 immediate-early genes,” Virology, vol. 186, no. 2, pp. 788–791, 1992.
[10]  J. D. Mosca, D. P. Bednarik, N. B. K. Raj et al., “Activation of human immunodeficiency virus by herpesvirus infection: identification of a region within the long terminal repeat that responds to a trans-acting factor encoded by herpes simplex virus 1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 21, pp. 7408–7412, 1987.
[11]  M. P. Golden, S. Kim, S. M. Hammer et al., “Activation of human immunodeficiency virus by herpes simplex virus,” Journal of Infectious Diseases, vol. 166, no. 3, pp. 494–499, 1992.
[12]  M. A. Albrecht, N. A. DeLuca, R. A. Byrn, P. A. Schaffer, and S. M. Hammer, “The herpes simplex virus immediate-early protein, ICP4, is required to potentiate replication of human immunodeficiency virus in CD4+ lymphocytes,” Journal of Virology, vol. 63, no. 5, pp. 1861–1868, 1989.
[13]  L. S. Kucera, E. Leake, N. Iyer, D. Raben, and Q. N. Myrvik, “Human immunodeficiency virus type 1 (HIV-1) and herpes simplex virus type 2 (HSV-2) can coinfect and simultaneously replicate in the same human CD4+ cell: effect of coinfection on infectious HSV-2 and HIV-1 replication,” AIDS Research and Human Retroviruses, vol. 6, no. 5, pp. 641–647, 1990.
[14]  T. Schacker, J. Zeh, H. Hu, M. Shaughnessy, and L. Corey, “Changes in plasma human immunodeficiency virus type 1 RNA associated with herpes simplex virus reactivation and suppression,” Journal of Infectious Diseases, vol. 186, no. 12, pp. 1718–1725, 2002.
[15]  R. A. Zuckerman, A. Lucchetti, W. L. H. Whittington et al., “Herpes simplex virus (HSV) suppression with valacyclovir reduces rectal and blood plasma HIV-1 levels in HIV-1/HSV-2-seropositive men: a randomized, double-blind, placebo-controlled crossover trial,” Journal of Infectious Diseases, vol. 196, no. 10, pp. 1500–1508, 2007.
[16]  E. F. Dunne, S. Whitehead, M. Sternberg et al., “Suppressive acyclovir therapy reduces HIV cervicovaginal shedding in HIV- and HSV-2-infected women, chiang rai, thailand,” Journal of Acquired Immune Deficiency Syndromes, vol. 49, no. 1, pp. 77–83, 2008.
[17]  J. M. Baeten, L. B. Strick, A. Lucchetti et al., “Herpes simplex virus (HSV)-suppressive therapy decreases plasma and genital HIV-1 levels in HSV-2/HIV-1 coinfected women: a randomized, placebo-controlled, cross-over trial,” Journal of Infectious Diseases, vol. 198, no. 12, pp. 1804–1808, 2008.
[18]  S. Delany, N. Mlaba, T. Clayton et al., “Impact of aciclovir on genital and plasma HIV-1 RNA in HSV-2/HIV-1 co-infected women: a randomized placebo-controlled trial in South Africa,” AIDS, vol. 23, no. 4, pp. 461–469, 2009.
[19]  C. Celum, A. Wald, J. R. Lingappa, et al., “Acyclovir and transmission of HIV-1 from persons infected with HIV-1 and HSV-2,” The New England Journal of Medicine, vol. 362, no. 5, pp. 427–439, 2010.
[20]  C. Tanton, H. A. Weiss, M. Rusizoka et al., “Long-term impact of acyclovir suppressive therapy on genital and plasma HIV RNA in Tanzanian women: a randomized controlled trial,” Journal of Infectious Diseases, vol. 201, no. 9, pp. 1285–1297, 2010.
[21]  K. Mugwanya, J. M. Baeten, N. R. Mugo, E. Irungu, K. Ngure, and C. Celum, “High-dose valacyclovir HSV-2 suppression results in greater reduction in plasma HIV-1 levels compared with standard dose acyclovir among HIV-1/HSV-2 coinfected persons: a randomized, crossover trial,” Journal of Infectious Diseases, vol. 204, no. 12, pp. 1912–1917, 2011.
[22]  A. Ouedraogo, N. Nagot, L. Vergne et al., “Impact of suppressive herpes therapy on genital HIV-1 RNA among women taking antiretroviral therapy: a randomized controlled trial,” AIDS, vol. 20, no. 18, pp. 2305–2313, 2006.
[23]  J. R. Lingappa, J. M. Baeten, A. Wald et al., “Daily aciclovir for HIV-1 disease progression in people dually infected with HIV-1 and herpes simplex virus type 2: a randomised placebo-controlled trial,” The Lancet, vol. 375, no. 9717, pp. 824–833, 2010.
[24]  S. J. Reynolds, F. Makumbi, K. Newell et al., “Effect of daily aciclovir on HIV disease progression in individuals in Rakai, Uganda, co-infected with HIV-1 and herpes simplex virus type 2: a randomised, double-blind placebo-controlled trial,” The Lancet Infectious Diseases, 2012.
[25]  L. Mole, S. Ripich, D. Margolis, and M. Holodniy, “The impact of active herpes simplex virus infection on human immunodeficiency virus load,” Journal of Infectious Diseases, vol. 176, no. 3, pp. 766–770, 1997.
[26]  J. M. Baeten, R. S. McClelland, L. Corey et al., “Vitamin A supplementation and genital shedding of herpes simplex virus among HIV-1-infected women: a randomized clinical trial,” Journal of Infectious Diseases, vol. 189, no. 8, pp. 1466–1471, 2004.
[27]  D. Serwadda, R. H. Gray, N. K. Sewankambo et al., “Human immunodeficiency virus acquisition associated with genital ulcer disease and herpes simplex virus type 2 infection: a nested case-control study in Rakai, Uganda,” Journal of Infectious Diseases, vol. 188, no. 10, pp. 1492–1497, 2003.
[28]  C. Ludema, S. R. Cole, C. Poole, H. Chu, and J. J. Eron, “Meta-analysis of randomized trials on the association of prophylactic acyclovir and HIV-1 viral load in individuals coinfected with herpes simplex virus-2,” AIDS, vol. 25, no. 10, pp. 1265–1269, 2011.
[29]  A. Lisco, C. Vanpouille, E. P. Tchesnokov et al., “Acyclovir is activated into a HIV-1 reverse transcriptase inhibitor in herpesvirus-infected human tissues,” Cell Host and Microbe, vol. 4, no. 3, pp. 260–270, 2008.
[30]  M. A. McMahon, J. D. Siliciano, J. Lai et al., “The antiherpetic drug acyclovir inhibits HIV replication and selects the V75I reverse transcriptase multidrug resistance mutation,” Journal of Biological Chemistry, vol. 283, no. 46, pp. 31289–31293, 2008.
[31]  M. A. McMahon, T. L. Parsons, L. Shen, J. D. Siliciano, and R. F. Siliciano, “Consistent inhibition of HIV-1 replication in CD4+ T cells by acyclovir without detection of human herpesviruses,” Journal of Virology, vol. 85, no. 9, pp. 4618–4622, 2011.
[32]  J. W. Mellors, C. R. Rinaldo Jr., P. Gupta, R. M. White, J. A. Todd, and L. A. Kingsley, “Prognosis in HIV-1 infection predicted by the quantity of virus in plasma,” Science, vol. 272, no. 5265, pp. 1167–1170, 1996.
[33]  K. Modjarrad, E. Chamot, and S. H. Vermund, “Impact of small reductions in plasma HIV RNA levels on the risk of heterosexual transmission and disease progression,” AIDS, vol. 22, no. 16, pp. 2179–2185, 2008.
[34]  J. P. A. Ioannidis, A. C. Collier, D. A. Cooper et al., “Clinical efficacy of high-dose acyclovir in patients with human immunodeficiency virus infection: a meta-analysis of randomized individual patient data,” Journal of Infectious Diseases, vol. 178, no. 2, pp. 349–359, 1998.
[35]  H. N. Kim, J. Wang, J. Hughes et al., “Effect of acyclovir on HIV-1 set point among herpes simplex virus type 2 seropositive persons during early HIV-1 infection,” Journal of Infectious Diseases, vol. 202, no. 5, pp. 734–738, 2010.
[36]  R. J. C. Gilson, A. E. Hawkins, M. R. Beecham et al., “Interactions between HIV and hepatitis B virus in homosexual men: effects on the natural history of infection,” AIDS, vol. 11, no. 5, pp. 597–606, 1997.
[37]  S. E. Kellerman, D. L. Hanson, A. D. McNaghten, and P. L. Fleming, “Prevalence of chronic hepatitis B and incidence of acute hepatitis B infection in human immunodeficiency virus-infected subjects,” Journal of Infectious Diseases, vol. 188, no. 4, pp. 571–577, 2003.
[38]  V. Soriano, P. Barreiro, L. Martin-Carbonero et al., “Treatment of chronic hepatitis B or C in HIV-infected patients with dual viral hepatitis,” Journal of Infectious Diseases, vol. 195, no. 8, pp. 1181–1183, 2007.
[39]  R. Weber, C. A. Sabin, N. Friis-M?ller, et al., “Liver-related deaths in persons infected with the human immunodeficiency virus the D:A:D study,” Archives of Internal Medicine, vol. 166, no. 15, pp. 1632–1641, 2006.
[40]  M. J. Alter, “Epidemiology of viral hepatitis and HIV co-infection,” Journal of Hepatology, vol. 44, no. 1, pp. S6–S9, 2006.
[41]  G. Mathews and S. Bhagani, “The epidemiology and natural history of HIV/HBV and HIV/HCV co-infections,” Journal of HIV therapy, vol. 8, no. 4, pp. 77–84, 2003.
[42]  C. L. Thio, E. C. Seaberg, R. Skolasky Jr. et al., “HIV-1, hepatitis B virus, and risk of liver-related mortality in the Multicenter Cohort Study (MACS),” The Lancet, vol. 360, no. 9349, pp. 1921–1926, 2002.
[43]  C. L. Thio, “Hepatitis B and human immunodeficiency virus coinfection,” Hepatology, vol. 49, no. 5, pp. S138–S145, 2009.
[44]  M. S. Sulkowski, D. L. Thomas, R. E. Chaisson, and R. D. Moore, “Hepatotoxicity associated with antiretroviral therapy in adults infected with human immunodeficiency virus and the role of hepatitis C or B virus infection,” Journal of the American Medical Association, vol. 283, no. 1, pp. 74–80, 2000.
[45]  M. Puoti, C. Torti, R. Bruno, G. Filice, and G. Carosi, “Natural history of chronic hepatitis B in co-infected patients,” Journal of Hepatology, vol. 44, no. 1, pp. S65–S70, 2006.
[46]  D. Konopnicki, A. Mocroft, S. De Wit et al., “Hepatitis B and HIV: prevalence, AIDS progression, response to highly active antiretroviral therapy and increased mortality in the EuroSIDA cohort,” AIDS, vol. 19, no. 6, pp. 593–601, 2005.
[47]  L. H. Omland, N. Weis, P. Skinh?j et al., “Impact of hepatitis B virus co-infection on response to highly active antiretroviral treatment and outcome in HIV-infected individuals: a nationwide cohort study,” HIV Medicine, vol. 9, no. 5, pp. 300–306, 2008.
[48]  C. J. Hoffmann, E. C. Seaberg, S. Young et al., “Hepatitis B and long-term HIV outcomes in coinfected HAART recipients,” AIDS, vol. 23, no. 14, pp. 1881–1889, 2009.
[49]  C. J. Hoffmann, S. Charalambous, D. J. Martin et al., “Hepatitis B virus infection and response to antiretroviral therapy (ART) in a South African ART Program,” Clinical Infectious Diseases, vol. 47, no. 11, pp. 1479–1485, 2008.
[50]  S. E. lsa, L. N. Gwamzhi, C. Akolo, and J. Giyan, “A prospective cohort study of immunologic and virologic outcomes in patients with HIV/AIDS and hepatitis virus co-infection in Jos, Nigeria,” Nigerian Journal of Medicine, vol. 19, no. 3, pp. 279–285, 2010.
[51]  D. Lincoln, K. Petoumenos, G. J. Dore et al., “HIV/HBV and HIV/HCV coinfection, and outcomes following highly active antiretroviral therapy,” HIV Medicine, vol. 4, no. 3, pp. 241–249, 2003.
[52]  E. Moore, M. B. J. Beadsworth, M. Chaponda et al., “Favourable one-year ART outcomes in adult Malawians with hepatitis B and C co-infection,” Journal of Infection, vol. 61, no. 2, pp. 155–163, 2010.
[53]  J. Idoko, S. Meloni, M. Muazu et al., “Impact of hepatitis b virus infection on human immunodeficiency virus response to antiretroviral therapy in Nigeria,” Clinical Infectious Diseases, vol. 49, no. 8, pp. 1268–1273, 2009.
[54]  W.-H. Sheng, M.-Y. Chen, S.-M. Hsieh et al., “Impact of chronic hepatitis B virus (HBV) Infection on outcomes of patients infected with HIV in an area where HBV infection is hyperendemic,” Clinical Infectious Diseases, vol. 38, no. 10, pp. 1471–1477, 2004.
[55]  C. Hawkins, B. Christian, J. Ye, et al., “Prevalence of Hepatitis B co-infection and response to antiretroviral therapy among HIV-infected patients in urban Tanzania,” AIDS, vol. 27, pp. 919–927, 2012.
[56]  A. de Luca, R. Bugarinin, A. C. Lepri, et al., “Coinfection with hepatitis viruses and outcome of initial antiretroviral regimens in previously na?ve HIV-infected subjects,” Archives of Internal Medicine, vol. 162, no. 18, pp. 2125–2132, 2002.
[57]  G. V. Matthews, P. Manzini, Z. Hu et al., “Impact of lamivudine on HIV and hepatitis B virus-related outcomes in HIV/hepatitis B virus individuals in a randomized clinical trial of antiretroviral therapy in southern Africa,” AIDS, vol. 25, no. 14, pp. 1727–1735, 2011.
[58]  A. Eskild, P. Magnus, G. Petersen et al., “Hepatitis B antibodies in HIV-infected homosexual men are associated with more rapid progression to AIDS,” AIDS, vol. 6, no. 6, pp. 571–574, 1992.
[59]  B. F. Scharschmidt, M. J. Held, H. H. Hollander et al., “Hepatitis B in patients with HIV infection: relationship to AIDS and patient survival,” Annals of Internal Medicine, vol. 117, no. 10, pp. 837–838, 1992.
[60]  A. Sinicco, R. Raiteri, M. Sciandra et al., “Coinfection and superinfection of hepatitis B virus in patients infected with human immunodeficiency virus: no evidence of faster progression to AIDS,” Scandinavian Journal of Infectious Diseases, vol. 29, no. 2, pp. 111–115, 1997.
[61]  R. E. Solomon, M. VanRaden, R. A. Kaslow et al., “Association of hepatitis B surface antigen and core antibody with acquisition and manifestations of human immunodeficiency virus type 1 (HIV-1) infection,” American Journal of Public Health, vol. 80, no. 12, pp. 1475–1478, 1990.
[62]  D. Greenspan, J. S. Greenspan, G. OVerby et al., “Risk factors for rapid progression from hairy leukoplakia to AIDS: a nested case-control study,” Journal of Acquired Immune Deficiency Syndromes, vol. 4, no. 7, pp. 652–658, 1991.
[63]  J. Ockenga, H. L. Tillmann, C. Trautwein, M. Stoll, M. P. Manns, and R. E. Schmidt, “Hepatitis B and C in HIV-infected patients: prevalence and prognostic value,” Journal of Hepatology, vol. 27, no. 1, pp. 18–24, 1997.
[64]  H. M. Chun, A. M. Fieberg, K. H. Hullsiek et al., “Epidemiology of hepatitis B virus infection in a US cohort of HIV-infected individuais during the past 20 years,” Clinical Infectious Diseases, vol. 50, no. 3, pp. 426–436, 2010.
[65]  H. Wang, Y. Li, C. Zhang et al., “Immunological and virological responses to combined antiretroviral therapy in HIV/hepatitis B virus-coinfected patients from a multicenter cohort,” AIDS, vol. 26, pp. 1755–1763, 2012.
[66]  C. L. Thio, L. Smeaton, M. Saulynas, et al., “Characterization of HIV-HBV coinfection in a multinational HIV-infected cohort,” AIDS, vol. 27, pp. 191–201, 2013.
[67]  W. P. Law, C. J. Duncombe, A. Mahanontharit et al., “Impact of viral hepatitis co-infection on response to antiretroviral therapy and HIV disease progression in the HIV-NAT cohort,” AIDS, vol. 18, no. 8, pp. 1169–1177, 2004.
[68]  J. W. Cohen Stuart, M. Velema, R. Schuurman, C. A. B. Boucher, and A. I. M. Hoepelman, “Occult hepatitis B in persons infected with HIV is associated with low CD4 counts and resolves during antiretroviral therapy,” Journal of Medical Virology, vol. 81, no. 3, pp. 441–445, 2009.
[69]  D. Chadwick, A. Stanley, S. Sarfo, et al., “Response to antiretroviral therapy in occult hepatitis B and HIV co-infection in West Africa,” AIDS, vol. 27, pp. 139–144, 2013.
[70]  E. Seto, T. S. B. Yen, B. M. Peterlin, and J.-H. Ou, “Trans-activation of the human immunodeficiency virus long terminal repeat by the hepatitis B virus X protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 21, pp. 8286–8290, 1988.
[71]  J.-S. Twu, K. Chu, and W. S. Robinson, “Hepatitis B virus X gene activates κB-like enhancer sequences in the long terminal repeat of human immunodeficiency virus 1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 13, pp. 5168–5172, 1989.
[72]  J.-S. Twu, C. A. Rosen, W. A. Haseltine, and W. S. Robinson, “Identification of a region within the human immunodeficiency virus type 1 long terminal repeat that is essential for transactivation by the hepatitis B virus gene X,” Journal of Virology, vol. 63, no. 6, pp. 2857–2860, 1989.
[73]  G. K. Nikolopoulos, D. Paraskevis, E. Hatzitheodorou et al., “Impact of hepatitis B virus infection on the progression of AIDS and mortality in HIV-infected individuals: a cohort study and meta-analysis,” Clinical Infectious Diseases, vol. 48, no. 12, pp. 1763–1771, 2009.
[74]  G. Wandeler, T. Gsponer, A. Bregenzer, et al., “Hepatitis C virus infections in the Swiss HIV Cohort Study: a rapidly evolving epidemic,” Clinical Infectious Diseases, vol. 55, pp. 1408–1416, 2012.
[75]  T. van de Laar, O. Pybus, S. Bruisten et al., “Evidence of a large, international network of HCV transmission in HIV-positive men who have sex with men,” Gastroenterology, vol. 136, no. 5, pp. 1609–1617, 2009.
[76]  A. Briat, E. Dulioust, J. Galimand et al., “Hepatitis C virus in the semen of men coinfected with HIV-1: prevalence and origin,” AIDS, vol. 19, no. 16, pp. 1827–1835, 2005.
[77]  H.-H. Thein, Q. Yi, G. J. Dore, and M. D. Krahn, “Natural history of hepatitis C virus infection in HIV-infected individuals and the impact of HIV in the era of highly active antiretroviral therapy: a meta-analysis,” AIDS, vol. 22, no. 15, pp. 1979–1991, 2008.
[78]  C. Smit, C. Van Den Berg, R. Geskus, B. Berkhout, R. Coutinho, and M. Prins, “Risk of hepatitis-related mortality increased among hepatitis C virus/HIV-coinfected drug users compared with drug users infected only with hepatitis C virus: a 20-year prospective study,” Journal of Acquired Immune Deficiency Syndromes, vol. 47, no. 2, pp. 221–225, 2008.
[79]  Y. Rotman and T. J. Liang, “Coinfection with hepatitis C virus and human immunodeficiency virus: virological, immunological, and clinical outcomes,” Journal of Virology, vol. 83, no. 15, pp. 7366–7374, 2009.
[80]  B. Roe and W. W. Hall, “Cellular and molecular interactions in coinfection with hepatitis C virus and human immunodeficiency virus,” Expert Reviews in Molecular Medicine, vol. 10, no. 30, article e30, pp. 1–19, 2008.
[81]  A. Y. Kim and R. T. Chung, “Coinfection with HIV-1 and HCV—a one-two punch,” Gastroenterology, vol. 137, no. 3, pp. 795–814, 2009.
[82]  T. Kuntzen, C. Tural, B. Li et al., “Intrahepatic mRNA expression in hepatitis C virus and HIV/hepatitis C virus co-infection: infiltrating cells, cytokines, and influence of HAART,” AIDS, vol. 22, no. 2, pp. 203–210, 2008.
[83]  N. Nakamoto, D. E. Kaplan, J. Coleclough et al., “Functional restoration of HCV-specific CD8 T cells by PD-1 blockade is defined by PD-1 expression and compartmentalization,” Gastroenterology, vol. 134, no. 7, pp. 1927–e2, 2008.
[84]  J. T. Blackard and K. E. Sherman, “HCV/HIV co-infection: time to re-evaluate the role of HIV in the liver?” Journal of Viral Hepatitis, vol. 15, no. 5, pp. 323–330, 2008.
[85]  A. C. Tuyama, F. Hong, Y. Saiman et al., “Human immunodeficiency virus (HIV)-1 infects human hepatic stellate cells and promotes collagen I and monocyte chemoattractant protein-1 expression: implications for the pathogenesis of HIV/hepatitis C virus-induced liver fibrosis,” Hepatology, vol. 52, no. 2, pp. 612–622, 2010.
[86]  N. Merchante, A. Rivero, I. De Los Santos-Gil et al., “Insulin resistance is associated with liver stiffness in HIV/HCV co-infected patients,” Gut, vol. 58, no. 12, pp. 1654–1660, 2009.
[87]  P. Halfon, G. Pénaranda, F. Carrat et al., “Influence of insulin resistance on hepatic fibrosis and steatosis in hepatitis C virus (HCV) mono-infected compared with HIV-HCV co-infected patients,” Alimentary Pharmacology and Therapeutics, vol. 30, no. 1, pp. 61–70, 2009.
[88]  T.-Y. Chen, E. L. Ding, G. R. Seage III, and A. Y. Kim, “Meta-analysis: increased mortality associated with hepatitis C in HIV-infected persons is unrelated to HIV disease progression,” Clinical Infectious Diseases, vol. 49, no. 10, pp. 1605–1615, 2009.
[89]  A. d'Arminio Monforte, A. Cozzi-Lepri, A. Castagna et al., “Risk of developing specific aids-defining illnesses in patients coinfected with HIV and hepatitis c virus with or without liver cirrhosis,” Clinical Infectious Diseases, vol. 49, no. 4, pp. 612–622, 2009.
[90]  A. Kovacs, R. Karim, W. J. Mack et al., “Activation of CD8 T cells predicts progression of HIV infection in women coinfected with hepatitis C virus,” Journal of Infectious Diseases, vol. 201, no. 6, pp. 823–834, 2010.
[91]  A. Kovacs, L. Al-Harthi, S. Christensen, W. Mack, M. Cohen, and A. Landay, “CD8+ T cell activation in women coinfected with human immunodeficiency virus type 1 and hepatitis C virus,” Journal of Infectious Diseases, vol. 197, no. 10, pp. 1402–1407, 2008.
[92]  V. D. Gonzalez, K. Falconer, K. G. Blom et al., “High levels of chronic immune activation in the T-cell compartments of patients coinfected with hepatitis C virus and human immunodeficiency virus type 1 and on highly active antiretroviral therapy are reverted by alpha interferon and ribavirin treatment,” Journal of Virology, vol. 83, no. 21, pp. 11407–11411, 2009.
[93]  C. K?rner, B. Kr?mer, D. Schulte, et al., “Effects of HCV co-infection on apoptosis of CD4+ T-cells in HIV-positive patients,” Clinical Science, vol. 116, pp. 861–870, 2009.
[94]  M. Potter, A. Odueyungbo, H. Yang, S. Saeed, and M. B. Klein, “Impact of hepatitis C viral replication on CD4+ T-lymphocyte progression in HIV-HCV coinfection before and after antiretroviral therapy,” AIDS, vol. 24, no. 12, pp. 1857–1865, 2010.
[95]  L. Peters, A. Mocroft, V. Soriano et al., “Hepatitis C virus coinfection does not influence the CD4 cell recovery in HIV-1-infected patients with maximum virologic suppression,” Journal of Acquired Immune Deficiency Syndromes, vol. 50, no. 5, pp. 457–463, 2009.
[96]  K. Yacisin, I. Maida, M. J. Ríos, V. Soriano, and M. Nú?ez, “Hepatitis C virus coinfection does not affect CD4 restoration in HIV-infected patients after initiation of antiretroviral therapy,” AIDS Research and Human Retroviruses, vol. 24, no. 7, pp. 935–940, 2008.
[97]  L. Al-Harthi, J. Voris, W. Du et al., “Evaluating the impact of hepatitis C virus (HCV) on highly active antiretroviral therapy-mediated immune responses in HCV/HIV-coinfected women: role of HCV on expression of primed/memory T cells,” Journal of Infectious Diseases, vol. 193, no. 9, pp. 1202–1210, 2006.
[98]  P. S. Sullivan, D. L. Hanson, E. H. Teshale, L. L. Wotring, and J. T. Brooks, “Effect of hepatitis C infection on progression of HIV disease and early response to initial antiretroviral therapy,” AIDS, vol. 20, no. 8, pp. 1171–1179, 2006.
[99]  M. S. Sulkowski, “Management of hepatic complications in HIV-infected persons,” Journal of Infectious Diseases, vol. 197, no. 3, pp. S279–S293, 2008.
[100]  J. F. Pascual-Pareja, A. Caminoa, J. Larrauri et al., “HAART is associated with lower hepatic necroinflammatory activity in HIV-hepatitis C virus-coinfected patients with CD4 cell count of more than 350 cells/μl at the time of liver biopsy,” AIDS, vol. 23, no. 8, pp. 971–975, 2009.
[101]  E. E. M. Moodie, N. P. Pai, and M. B. Klein, “Is antiretroviral therapy causing long-term liver damage? A comparative analysis of HIV-mono-infected and HIV/hepatitis C co-infected cohorts,” PLoS ONE, vol. 4, no. 2, Article ID e4517, 2009.
[102]  M. A. Thompson, J. A. Aberg, J. F. Hoy, et al., “Antiretroviral treatment of adult HIV infection: 2012 recommendations of the International Antiviral Society-USA panel,” Journal of the American Medical Association, vol. 308, pp. 387–402, 2012.
[103]  P. V. Chin-Hong and J. M. Palefsky, “Natural history and clinical management of anal human papillomavirus disease in men and women infected with human immunodeficiency virus,” Clinical Infectious Diseases, vol. 35, no. 9, pp. 1127–1134, 2002.
[104]  S. Thavaraj, A. Stokes, E. Guerra et al., “Evaluation of human papillomavirus testing for squamous cell carcinoma of the tonsil in clinical practice,” Journal of Clinical Pathology, vol. 64, no. 4, pp. 308–312, 2011.
[105]  R. Faridi, A. Zahra, K. Khan, and M. Idrees, “Oncogenic potential of human papillomavirus (HPV) and its relation with cervical cancer,” Virology Journal, vol. 8, article 269, 2011.
[106]  J. M. Palefsky, “Anal cancer prevention in HIV-positive men and women,” Current Opinion in Oncology, vol. 21, no. 5, pp. 433–438, 2009.
[107]  T. Rosen and J. H. Spedale, “Relationships between sexually transmitted diseases and human immunodeficiency virus infection,” Current Problems in Dermatology, vol. 9, no. 6, pp. 242–262, 1997.
[108]  A. R. Garbuglia, P. Piselli, D. Lapa et al., “Frequency and multiplicity of human papillomavirus infection in HIV-1 positive women in Italy,” Journal of Clinical Virology, vol. 54, no. 2, pp. 141–146, 2012.
[109]  S. G. Parisi, M. Cruciani, R. Scaggiante et al., “Anal and oral human papillomavirus (HPV) infection in HIV-infected subjects in northern Italy: a longitudinal cohort study among men who have sex with men,” BMC Infectious Diseases, vol. 11, article 150, 2011.
[110]  R. G. Nowak, P. E. Gravitt, C. S. Morrison et al., “Increases in human papillomavirus detection during early HIV infection among women in Zimbabwe,” Journal of Infectious Diseases, vol. 203, no. 8, pp. 1182–1191, 2011.
[111]  P. A. Fox, “Human papillomavirus and anal intraepithelial neoplasia,” Current Opinion in Infectious Diseases, vol. 19, no. 1, pp. 62–66, 2006.
[112]  L. Conley, T. Bush, T. M. Darragh et al., “Factors associated with prevalent abnormal anal cytology in a large cohort of HIV-infected adults in the United States,” Journal of Infectious Diseases, vol. 202, no. 10, pp. 1567–1576, 2010.
[113]  A. S. Baranoski, R. Tandon, J. Weinberg, F. F. Huang, and E. A. Stier, “Risk factors for abnormal anal cytology over time in HIV-infected women,” American Journal of Obstetrics and Gynecology, 2012.
[114]  N. F. Crum-Cianflone, K. H. Hullsiek, V. C. Marconi et al., “Anal cancers among HIV-infected persons: HAART is not slowing rising incidence,” AIDS, vol. 24, no. 4, pp. 535–543, 2010.
[115]  C. F. Houlihan, N. L. Larke, D. Watson-Jones, et al., “Human papillomavirus infection and increased risk of HIV acquisition. A systematic review and meta-analysis,” AIDS, vol. 26, pp. 2211–2222, 2012.
[116]  J. S. Smith, S. Moses, M. G. Hudgens et al., “Increased risk of HIV acquisition among kenyan men with human papillomavirus infection,” Journal of Infectious Diseases, vol. 201, no. 11, pp. 1677–1685, 2010.
[117]  N. M. Zetola and J. D. Klausner, “Syphilis and HIV infection: an update,” Clinical Infectious Diseases, vol. 44, no. 9, pp. 1222–1228, 2007.
[118]  J. D. Heffelfinger, E. B. Swint, S. M. Berman, and H. S. Weinstock, “Trends in primary and secondary syphilis among men who have sex with men in the United States,” American Journal of Public Health, vol. 97, no. 6, pp. 1076–1083, 2007.
[119]  J. R. Su, J. F. Beltrami, A. A. Zaidi, and H. S. Weinstock, “Primary and secondary syphilis among black and hispanic men who have sex with men: case report data from 27 states,” Annals of Internal Medicine, vol. 155, no. 3, pp. 145–152, 2011.
[120]  X. Zhang, C. Wang, W. Hengwei et al., “Risk factors of HIV infection and prevalence of co-infections among men who have sex with men in Beijing, China,” AIDS, vol. 21, no. 8, pp. S53–S57, 2007.
[121]  T. L. Patterson, S. J. Semple, H. Staines et al., “Prevalence and correlates of HIV infection among female sex workers in 2 Mexico-US border cities,” Journal of Infectious Diseases, vol. 197, no. 5, pp. 728–732, 2008.
[122]  K. G. Ghanem, R. D. Moore, A. M. Rompalo, E. J. Erbelding, J. M. Zenilman, and K. A. Gebo, “Antiretroviral therapy is associated with reduced serologic failure rates for syphilis among HIV-infected patients,” Clinical Infectious Diseases, vol. 47, no. 2, pp. 258–265, 2008.
[123]  D. F. Knaute, N. Graf, S. Lautenschlager, R. Weber, and P. P. Bosshard, “Serological response to treatment of syphilis according to disease stage and HIV status,” Clinical Infectious Diseases, vol. 55, pp. 1615–1622, 2012.
[124]  K. Buchacz, P. Patel, M. Taylor et al., “Syphilis increases HIV viral load and decreases CD4 cell counts in HIV-infected patients with new syphilis infections,” AIDS, vol. 18, no. 15, pp. 2075–2079, 2004.
[125]  K. Kofoed, J. Gerstoft, L. R. Mathiesen, and T. Benfield, “Syphilis and human immunodeficiency virus (HIV)-1 coinfection: influence on CD4 T-cell count, HIV-1 viral load, and treatment response,” Sexually Transmitted Diseases, vol. 33, no. 3, pp. 143–148, 2006.
[126]  R. Palacios, F. Jiménez-O?ate, M. Aguilar et al., “Impact of syphilis infection on HIV viral load and CD4 cell counts in HIV-infected patients,” Journal of Acquired Immune Deficiency Syndromes, vol. 44, no. 3, pp. 356–359, 2007.
[127]  R. Manfredi, S. Sabbatani, D. Pocaterra, L. Calza, and F. Chiodo, “Syphilis does not seem to involve virological and immunological course of concurrent HIV disease,” AIDS, vol. 20, no. 2, pp. 305–306, 2006.
[128]  S. T. Sadiq, J. McSorley, A. J. Copas et al., “The effects of early syphilis on CD4 counts and HIV-1 RNA viral loads in blood and semen,” Sexually Transmitted Infections, vol. 81, no. 5, pp. 380–385, 2005.
[129]  W. Jarzebowski, E. Caumes, N. Dupin, et al., “Effect of early syphilis infection on plasma viral load and CD4 cell count in human immunodeficiency virus-infected men: results from the FHDH-ANRS CO4 cohort,” Arch Intern Med, vol. 172, no. 16, pp. 1237–1243, 2012.
[130]  S. A. Theus, D. A. Harrich, R. Gaynor, J. D. Radolf, and M. V. Norgard, “Treponema pallidum, lipoproteins, and synthetic lipoprotein analogues induce human immunodeficiency virus type 1 gene expression in monocytes via NF-κB activation,” Journal of Infectious Diseases, vol. 177, no. 4, pp. 941–950, 1998.
[131]  A. C. Weintrob, W. Gu, J. Qin et al., “Syphilis co-infection does not affect HIV disease progression,” International Journal of STD and AIDS, vol. 21, no. 1, pp. 57–59, 2010.
[132]  C. K. Kent, J. K. Chaw, W. Wong et al., “Prevalence of rectal, urethral, and pharyngeal chlamydia and gonorrhea detected in 2 clinical settings among men who have sex with men: San Francisco, California, 2003,” Clinical Infectious Diseases, vol. 41, no. 1, pp. 67–74, 2005.
[133]  M. Johansson, K. Sch?n, M. Ward, and N. Lycke, “Studies in knockout mice reveal that anti-chlamydial protection requires TH1 cells producing IFN-γ: is this true for humans?” Scandinavian Journal of Immunology, vol. 46, no. 6, pp. 546–552, 1997.
[134]  R. G. Rank, L. S. F. Soderberg, and A. L. Barron, “Chronic chlamydial genital infection in congenitally athymic nude mice,” Infection and Immunity, vol. 48, no. 3, pp. 847–849, 1985.
[135]  S. Wang, Y. Fan, R. C. Brunham, and X. Yang, “IFN-gamma knockout mice show Th2-associated delayed-type hypersensitivity and the inflammatory cells fail to localize and control chlamydial infection,” European Journal of Immunology, vol. 29, pp. 3782–3792, 1999.
[136]  C. R. Cohen, R. Nguti, E. A. Bukusi et al., “Human immunodeficiency virus type 1-infected women exhibit reduced interferon-γ secretion after Chlamydia trachomatis stimulation of peripheral blood lymphocytes,” Journal of Infectious Diseases, vol. 182, no. 6, pp. 1672–1677, 2000.
[137]  M. S. Cohen, I. F. Hoffman, R. A. Royce et al., “Reduction of concentration of HIV-1 in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1,” The Lancet, vol. 349, no. 9069, pp. 1868–1873, 1996.
[138]  S. T. Sadiq, S. Taylor, A. J. Copas et al., “The effects of urethritis on seminal plasma HIV-1 RNA loads in homosexual men not receiving antiretroviral therapy,” Sexually Transmitted Infections, vol. 81, no. 2, pp. 120–123, 2005.
[139]  S. T. Sadiq, S. Taylor, S. Kaye et al., “The effects of antiretroviral therapy on HIV-1 RNA loads in seminal plasma in HIV-positive patients with and without urethritis,” AIDS, vol. 16, no. 2, pp. 219–225, 2002.
[140]  G. Rieg, D. M. Butler, D. M. Smith, and E. S. Daar, “Seminal plasma HIV levels in men with asymptomatic sexually transmitted infections,” International Journal of STD and AIDS, vol. 21, no. 3, pp. 207–208, 2010.
[141]  C. F. Kelley, R. E. Haaland, P. Patel et al., “HIV-1 RNA rectal shedding is reduced in Men with Low plasma HIV-1 RNA viral loads and is not enhanced by sexually transmitted bacterial infections of the rectum,” Journal of Infectious Diseases, vol. 204, no. 5, pp. 761–767, 2011.
[142]  J. N. Nkengasong, L. Kestens, P. D. Ghys et al., “Human immunodeficiency virus type 1 (HIV-1) plasma virus load and markers of immune activation among HIV-infected female sex workers with sexually transmitted diseases in Abidjan, C?te d'Ivoire,” Journal of Infectious Diseases, vol. 183, no. 9, pp. 1405–1408, 2001.
[143]  A. O. Anzala, J. N. Simonsen, J. Kimani et al., “Acute sexually transmitted infections increase human immunodeficiency virus type 1 plasma viremia, increase plasma type 2 cytokines, and decrease CD4 cell counts,” Journal of Infectious Diseases, vol. 182, no. 2, pp. 459–466, 2000.
[144]  A. C. Gerbase, J. T. Rowley, D. H. L. Heymann, S. F. B. Berkley, and P. Piot, “Global prevalence and incidence estimates of selected curable STDS,” Sexually Transmitted Infections, vol. 74, no. 1, pp. S12–S16, 1998.
[145]  V. J. Johnston and D. C. Mabey, “Global epidemiology and control of Trichomonas vaginalis,” Current Opinion in Infectious Diseases, vol. 21, no. 1, pp. 56–64, 2008.
[146]  L. H. Bachmann, M. M. Hobbs, A. C. Se?a, et al., “Trichomonas vaginalis genital infections: progress and challenges,” Clinical Infectious Diseases, vol. 53, supplement 3, pp. S160–S172, 2011.
[147]  World Health Organization, “Global prevalence and incidence of selected curable sexually transmitted infections,” Geneva, Switzerland, 2001, http://www.who.int/hiv/pub/sti/who_hiv_aids_2001.02.pdf.
[148]  S. C. Shafir, F. J. Sorvillo, and L. Smith, “Current issues and considerations regarding Trichomoniasis and human immunodeficiency virus in African-Americans,” Clinical Microbiology Reviews, vol. 22, no. 1, pp. 37–45, 2009.
[149]  S. Cu-Uvin, H. Ko, D. J. Jamieson et al., “Prevalence, incidence, and persistence or recurrence of trichomoniasis among human immunodeficiency virus (HIV)-positive women and among HIV-negative women at high risk for HIV infection,” Clinical Infectious Diseases, vol. 34, no. 10, pp. 1406–1411, 2002.
[150]  M. Gatski, D. H. Martin, R. A. Clark, E. Harville, N. Schmidt, and P. Kissinger, “Co-occurrence of Trichomonas vaginalis and bacterial vaginosis among hiv-positive women,” Sexually Transmitted Diseases, vol. 38, no. 3, pp. 163–166, 2011.
[151]  J. R. Schwebke, “Trichomoniasis in adolescents: a marker for the lack of a public health response to the epidemic of sexually transmitted diseases in the United States,” Journal of Infectious Diseases, vol. 192, no. 12, pp. 2036–2038, 2005.
[152]  H. Swygard, A. C. Se?a, M. M. Hobbs, and M. S. Cohen, “Trichomoniasis: clinical manifestations, diagnosis and management,” Sexually Transmitted Infections, vol. 80, no. 2, pp. 91–95, 2004.
[153]  I. T. Gram, M. Macaluso, J. Churchill, and H. Stalsberg, “Trichomonas vaginalis (TV) and human papillomavirus (HPV) infection and the incidence of cervical intraepithelial neoplasia (CIN) grade III,” Cancer Causes and Control, vol. 3, no. 3, pp. 231–236, 1992.
[154]  H. W. Chesson, J. M. Blandford, and S. D. Pinkerton, “Estimates of the annual number and cost of new HIV infections among women attributable to trichomoniasis in the United States,” Sexually Transmitted Diseases, vol. 31, no. 9, pp. 547–551, 2004.
[155]  R. S. McClelland, L. Sangaré, W. M. Hassan et al., “Infection with Trichomonas vaginalis increases the risk of HIV-1 acquisition,” Journal of Infectious Diseases, vol. 195, no. 5, pp. 698–702, 2007.
[156]  S. N. Mavedzenge, B. Van Der Pol, H. Cheng et al., “Epidemiological synergy of Trichomonas vaginalis and HIV in Zimbabwean and South African women,” Sexually Transmitted Diseases, vol. 37, no. 7, pp. 460–466, 2010.
[157]  I. Kleinschmidt, H. Rees, S. Delany et al., “Injectable progestin contraceptive use and risk of HIV infection in a South African family planning cohort,” Contraception, vol. 75, no. 6, pp. 461–467, 2007.
[158]  T. C. Quinn, M. J. Wawer, N. Sewankambo et al., “Viral load and heterosexual transmission of human immunodeficiency virus type 1,” The New England Journal of Medicine, vol. 342, no. 13, pp. 921–929, 2000.
[159]  J.-A. R?ttingen, W. D. Cameron, and G. P. Garnett, “A systematic review of the epidemiologic interactions between classic sexually transmitted diseases and HIV: how much really is known?” Sexually Transmitted Diseases, vol. 28, no. 10, pp. 579–597, 2001.
[160]  E. B. Quinlivan, S. N. Patel, C. A. Grodensky, C. E. Golin, H. C. Tien, and M. M. Hobbs, “Modeling the impact of Trichomonas vaginalis infection on HIV transmission in HIV-infected individuals in medical care,” Sexually Transmitted Diseases, vol. 39, no. 9, pp. 671–677, 2012.
[161]  F. Sorvillo, L. Smith, P. Kerndt, and L. Ash, “Trichomonas vaginalis, HIV, and African-Americans,” Emerging Infectious Diseases, vol. 7, no. 6, pp. 927–932, 2001.
[162]  W. C. Levine, V. Pope, A. Bhoomkar et al., “Increase in endocervical CD4 lymphocytes among women with nonulcerative sexually transmitted diseases,” Journal of Infectious Diseases, vol. 177, no. 1, pp. 167–174, 1998.
[163]  N. B. Kiviat, J. A. Paavonen, and J. Brockway, “Cytologic manifestations of cervical and vaginal infections. I. Epithelial and inflammatory cellular changes,” Journal of the American Medical Association, vol. 253, no. 7, pp. 989–996, 1985.
[164]  P. Mirmonsef, L. Krass, A. Landay, and G. T. Spear, “The role of bacterial vaginosis and trichomonas in HIV transmission across the female genital tract,” Current HIV Research, vol. 10, pp. 202–210, 2012.
[165]  T. C. Wright Jr., S. Subbarao, T. V. Ellerbrock et al., “Human immunodeficiency virus 1 expression in the female genital tract in association with cervical inflammation and ulceration,” American Journal of Obstetrics and Gynecology, vol. 184, no. 3, pp. 279–285, 2001.
[166]  S. D. Lawn, S. Subbarao, T. C. Wright Jr. et al., “Correlation between human immunodeficiency virus type 1 RNA levels in the female genital tract and immune activation associated with ulceration of the cervix,” Journal of Infectious Diseases, vol. 181, no. 6, pp. 1950–1956, 2000.
[167]  M. A. Price, D. Zimba, I. F. Huffman, et al., “Addition of treatment for trichomoniasis to syndromic management of urethritis in Malawi: a randomized clinical trial,” Sexually Transmitted Diseases, vol. 30, no. 6, pp. 516–522, 2004.
[168]  L. N. Masese, S. M. Graham, R. Gitau et al., “A prospective study of vaginal trichomoniasis and HIV-1 shedding in women on antiretroviral therapy,” BMC Infectious Diseases, vol. 11, article 307, 2011.
[169]  C. C. Wang, R. S. McClelland, M. Reilly et al., “The effect of treatment of vaginal infections on shedding of human immunodeficiency virus type 1,” Journal of Infectious Diseases, vol. 183, no. 7, pp. 1017–1022, 2001.
[170]  B. L. Anderson, C. Firnhaber, T. Liu et al., “Effect of trichomoniasis therapy on genital HIV viral burden among African women,” Sexually Transmitted Diseases, vol. 39, no. 8, pp. 638–642, 2012.
[171]  P. Kissinger, A. Amedee, R. A. Clark et al., “Trichomonas vaginalis treatment reduces vaginal HIV-1 shedding,” Sexually Transmitted Diseases, vol. 36, no. 1, pp. 11–16, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413