全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Identification of DLEC1 D215N Somatic Mutation in Formalin Fixed Paraffin Embedded Melanoma and Melanocytic Nevi Specimens

DOI: 10.1155/2013/469671

Full-Text   Cite this paper   Add to My Lib

Abstract:

DLEC1 has been suggested as a tumor suppressor gene in several cancers. DLEC1 D215N somatic mutation (COSM36702) was identified in a melanoma cell line through whole genome sequencing. However, little is known about the implication and prevalence of this mutation in primary melanomas or in melanocytic nevi. The aim of this study was to genotype DLEC1 D215N mutation in melanoma tissue and melanocytic nevi samples to confirm its occurrence and to estimate its prevalence. Primary melanomas ( ) paired with synchronous or asynchronous metastases ( ) from 81 melanoma patients and melanocytic nevi ( ) were screened for DLEC1 D215N mutation. We found the mutation in 3 primary melanomas and in 2 melanocytic nevi, corresponding to a relatively low prevalence (3.7% and 7.1%, resp.). The pathogenic role of DLEC1 215N mutation is unclear. However, since the mutation has not been previously described in general population, its involvement in nevogenesis and melanoma progression remains a possibility to be clarified in future studies. 1. Introduction Mutations in deleted in lung and esophageal cancer 1 (DLEC1) gene or its inactivation by epigenetic silencing, namely, promoter CpG island hypermethylation or histone hypoacetylation, were previously reported in several cancers (lung [1], esophagus [2], kidney [3], stomach [4], colon [4], ovary [5], breast [6], head and neck [7], and lymphoma [8]). Furthermore, a negative impact on the prognosis related with DLEC1 inactivation was demonstrated in lung [9], kidney [10], and ovary [5] carcinomas. DLEC1 D215N mutation (COSM36702) is a substitution in codon 641 (ENST00000308059) which was identified in whole genome sequencing of a tumor cell line derived from melanoma metastases [11]. To establish the catalogue of somatic mutations in cancer cells, a lymphoblastoid line derived from the same patient was also sequenced [11]. Three different missense mutations were found in other genome or exome sequencing studies, making DLEC1 a candidate tumor suppressor gene in cutaneous melanoma, probably acting by inhibition of cell proliferation [12, 13]. Nevertheless, the prevalence of DLEC1 mutations among primary melanomas, melanoma metastases, or benign melanocytic nevi remains undetermined. The aim of this study was to confirm the occurrence and estimate the prevalence of DLEC1 D215N mutation in formalin fixed and paraffin embedded tissue samples from melanoma and melanocytic nevi. 2. Patients and Methods 2.1. Melanoma Patients In all, 102 formalin fixed paraffin embedded tumor tissues from 81 patients with melanoma were screened.

References

[1]  Y. Zhang, Y. Miao, J. Yi, R. Wang, and L. Chen, “Frequent epigenetic inactivation of deleted in lung and esophageal cancer 1 gene by promoter methylation in non-small-cell lung cancer,” Clinical Lung Cancer, vol. 11, no. 4, pp. 264–270, 2010.
[2]  Y. Daigo, T. Nishiwaki, T. Kawasoe, M. Tamari, E. Tsuchiya, and Y. Nakamura, “Molecular cloning of a candidate tumor suppressor gene, DLC1, from chromosome 3p21.3,” Cancer Research, vol. 59, no. 8, pp. 1966–1972, 1999.
[3]  C. J. Ricketts, M. R. Morris, D. Gentle et al., “Genome-wide CpG island methylation analysis implicates novel genes in the pathogenesis of renal cell carcinoma,” Epigenetics, vol. 7, no. 3, pp. 278–290, 2012.
[4]  J. Ying, F. F. Poon, J. Yu et al., “DLEC1 is a functional 3p22.3 tumour suppressor silenced by promoter CpG methylation in colon and gastric cancers,” British Journal of Cancer, vol. 100, no. 4, pp. 663–669, 2009.
[5]  C. Montavon, B. S. Gloss, K. Warton et al., “Prognostic and diagnostic significance of DNA methylation patterns in high grade serous ovarian cancer,” Gynecologic Oncology, vol. 124, no. 3, pp. 582–588, 2012.
[6]  W. Al Sarakbi, S. Reefy, W. G. Jiang, T. Roberts, R. F. Newbold, and K. Mokbel, “Evidence of a tumour suppressor function for DLEC1 in human breast cancer,” Anticancer Research, vol. 30, no. 4, pp. 1079–1082, 2010.
[7]  I. M. Smith, S. K. Mithani, C. Liu et al., “Novel integrative methods for gene discovery associated with head and neck squamous cell carcinoma development,” Archives of Otolaryngology, vol. 135, no. 5, pp. 487–495, 2009.
[8]  Z. Wang, L. Li, X. Su et al., “Epigenetic silencing of the 3p22 tumour supressor DLEC1 by promoter CpG methylation in non-Hodgkin and Hodgkin lymphomas,” Journal of Translational Medicine, vol. 10, article 209, 2012.
[9]  H. Sasaki, Y. Hikosaka, O. Kawan, S. Moiyama, M. Yan, and Y. Fujii, “Methylation of the DLEC1 gene correlates with poor prognosis in Japanese lung cancer patients,” Oncology Letters, vol. 1, no. 2, pp. 283–287, 2010.
[10]  Q. Zhang, J. Ying, J. Li et al., “Aberrant promoter methylation of DLEC1, a critical 3p22 tumor suppressor for renal cell carcinoma, is associated with more advanced tumor stage,” Journal of Urology, vol. 184, no. 2, pp. 731–737, 2010.
[11]  E. D. Pleasance, R. K. Cheetham, P. J. Stephens et al., “A comprehensive catalogue of somatic mutations from a human cancer genome,” Nature, vol. 463, no. 7278, pp. 191–196, 2010.
[12]  X. Wei, V. Walia, J. C. Lin et al., “Exome sequencing identifies GRIN2A as frequently mutated in melanoma,” Nature Genetics, vol. 43, no. 5, pp. 442–448, 2011.
[13]  M. Berger, E. Hodis, T. Heffernan, et al., “Melanoma genome sequencing reveals frequent PREX2 mutations,” Nature, vol. 485, pp. 502–506, 2012.
[14]  R. Klopfleisch, A. T. A. Weiss, and A. D. Gruber, “Excavation of a buried treasure—DNA, mRNA, miRNA and protein analysis in formalin fixed, paraffin embedded tissues,” Histology and Histopathology, vol. 26, no. 6, pp. 797–810, 2011.
[15]  J. Solassol, J. Ramos, E. Crapez et al., “KRAS mutation detection in paired frozen and formalin-fixed paraffin-embedded (FFPE) colorectal cancer tissues,” International Journal of Molecular Sciences, vol. 12, no. 5, pp. 3191–3204, 2011.
[16]  P. C. Ng and S. Henikoff, “Predicting deleterious amino acid substitutions,” Genome Research, vol. 11, no. 5, pp. 863–874, 2001.
[17]  J. Wangari-Talbot and S. Chen, “Genetics of melanoma,” Frontiers in Genetics, vol. 3, article 330, 2012.
[18]  K. Omholt, A. Platz, L. Kanter, U. Ringborg, and J. Hansson, “NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression,” Clinical Cancer Research, vol. 9, no. 17, pp. 6483–6488, 2003.
[19]  A. Slipicevic and M. Herlyn, “Narrowing the knowledge gaps for melanoma,” Upsala Journal of Medical Sciences, vol. 117, no. 2, pp. 237–243, 2012.
[20]  S. L. Tran, S. Haferkamp, L. L. Scurr et al., “Absence of distinguishing senescence traits in human melanocytic nevi,” Journal of Investigative Dermatology, vol. 132, pp. 2226–2234, 2012.
[21]  A. Sigal and V. Rotter, “Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome,” Cancer Research, vol. 60, no. 24, pp. 6788–6793, 2000.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413