全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Potential Role of Meiosis Proteins in Melanoma Chromosomal Instability

DOI: 10.1155/2013/190109

Full-Text   Cite this paper   Add to My Lib

Abstract:

Melanomas demonstrate chromosomal instability (CIN). In fact, CIN can be used to differentiate melanoma from benign nevi. The exact molecular mechanisms that drive CIN in melanoma have yet to be fully elucidated. Cancer/testis antigens are a unique group of germ cell proteins that are found to be primarily expressed in melanoma as compared to benign nevi. The abnormal expression of these germ cell proteins, normally expected only in the testis and ovaries, in somatic cells may lead to interference with normal cellular pathways. Germ cell proteins that may be particularly critical in CIN are meiosis proteins. Here, we review pathways unique to meiosis with a focus on how the aberrant expression of meiosis proteins in normal mitotic cells “meiomitosis” could impact chromosomal instability in melanoma and other cancers. 1. Introduction Melanomas exhibit chromosomal instability (CIN). In fact, CIN is one of the most useful molecular markers to differentiate melanomas from benign nevi [1, 2]. Bastian et al. found that 96.2% of melanomas demonstrated chromosomal aberrations while only 13.0% of benign nevi showed these same abnormalities, of which all were Spitz nevi with stable 11p duplications [1]. Melanomas generally exhibit an increased number of overall chromosomes with frequent large translocations [1]. The fact that melanomas have such unstable genomes comes as no surprise, as genomic instability is widely regarded as the hallmark of cancer [3–7]. While genomic instability decreases the viability of most cells, it may also permit a subpopulation of cells to acquire genetic changes that lead them to escape normal growth control mechanisms. In addition, genomic instability allows established cancers to evolve and evade immunologic and pharmacologic destruction [8]. The extent to which different mechanisms play a role in genomic instability is controversial [4]; however three pathways are generally most accepted. These are defective DNA repair, telomere crisis, and mitotic spindle malfunction [3, 9–12]. An underappreciated but potentially important research area is the abnormal expression of germ cell proteins. Expression of germ cell proteins has long been observed in cancer cells [13]. Cancer/testis antigens (CTAs) are a family of germ cell proteins expressed in a multitude of different histological tumor types [13, 14]. These proteins have been noted to have both diagnostic and prognostic value [2]. Studies have shown that expression of specific CTAs in melanoma can be used to predict tumor thickness, the presence of ulceration, and likelihood to

References

[1]  B. C. Bastian, A. B. Olshen, P. E. LeBoit, and D. Pinkel, “Classifying melanocytic tumors based on DNA copy number changes,” American Journal of Pathology, vol. 163, no. 5, pp. 1765–1770, 2003.
[2]  A. M. Rosa, N. Dabas, D. M. Byrnes, M. S. Eller, and J. M. Grichnik, “Germ cell proteins in melanoma: prognosis, diagnosis, treatment, and theories on expression,” Journal of Skin Cancer, vol. 2012, Article ID 621968, 8 pages, 2012.
[3]  T. Davoli and T. de Lange, “The causes and consequences of polyploidy in normal development and cancer,” Annual Review of Cell and Developmental Biology, vol. 27, pp. 585–610, 2011.
[4]  S. Negrini, V. G. Gorgoulis, and T. D. Halazonetis, “Genomic instability—an evolving hallmark of cancer,” Nature Reviews Molecular Cell Biology, vol. 11, no. 3, pp. 220–228, 2010.
[5]  D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011.
[6]  D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000.
[7]  M. Roh, O. E. Franco, S. W. Hayward, R. van der Meer, and S. A. Abdulkadir, “A role for polyploidy in the tumorigenicity of Pim-1-expressing human prostate and mammary epithelial cells,” PLoS ONE, vol. 3, no. 7, Article ID e2572, 2008.
[8]  G. Brkic, J. Gopas, N. Tanic et al., “Genomic instability in drug-resistant human melanoma cell lines detected by Alu-I-arbitrary-primed PCR,” Anticancer Research, vol. 23, no. 3, pp. 2601–2608, 2003.
[9]  V. M. Draviam, S. Xie, and P. K. Sorger, “Chromosome segregation and genomic stability,” Current Opinion in Genetics and Development, vol. 14, no. 2, pp. 120–125, 2004.
[10]  D. Gilley, H. Tanaka, and B. S. Herbert, “Telomere dysfunction in aging and cancer,” International Journal of Biochemistry and Cell Biology, vol. 37, no. 5, pp. 1000–1013, 2005.
[11]  W. T. Silkworth, I. K. Nardi, L. M. Scholl, and D. Cimini, “Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells,” PLoS ONE, vol. 4, no. 8, Article ID e6564, 2009.
[12]  A. G. Silva, H. A. Graves, A. Guffei et al., “Telomere-centromere-driven genomic instability contributes to karyotype evolution in a mouse model of melanoma,” Neoplasia, vol. 12, no. 1, pp. 11–19, 2010.
[13]  E. Fratta, S. Coral, A. Covre et al., “The biology of cancer testis antigens: putative function, regulation and therapeutic potential,” Molecular Oncology, vol. 5, no. 2, pp. 164–182, 2011.
[14]  P. Chomez, O. de Backer, M. Bertrand, E. de Plaen, T. Boon, and S. Lucas, “An overview of the MAGE gene family with the identification of all human members of the family,” Cancer Research, vol. 61, no. 14, pp. 5544–5551, 2001.
[15]  S. Svobodová, J. Browning, D. MacGregor et al., “Cancer-testis antigen expression in primary cutaneous melanoma has independent prognostic value comparable to that of Breslow thickness, ulceration and mitotic rate,” European Journal of Cancer, vol. 47, no. 3, pp. 460–469, 2011.
[16]  ?. Türeci, U. Sahin, C. Zwick, M. Koslowski, G. Seitz, and M. Pfreundschuh, “Identification of a meiosis-specific protein as a member of the class of cancer/testis antigens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 9, pp. 5211–5216, 1998.
[17]  Y. T. Chen, C. A. Venditti, G. Theiler et al., “Identification of CT46/HORMAD1, an immunogenic cancer/testis antigen encoding a putative meiosis-related protein,” Cancer Immunity, vol. 5, p. 9, 2005.
[18]  A. J. G. Simpson, O. L. Caballero, A. Jungbluth, Y. T. Chen, and L. J. Old, “Cancer/testis antigens, gametogenesis and cancer,” Nature Reviews Cancer, vol. 5, no. 8, pp. 615–625, 2005.
[19]  J. M. Grichnik, “Genomic instability and tumor stem cells,” Journal of Investigative Dermatology, vol. 126, no. 6, pp. 1214–1216, 2006.
[20]  J. M. Grichnik, “Melanoma, nevogenesis, and stem cell biology,” Journal of Investigative Dermatology, vol. 128, no. 10, pp. 2365–2380, 2008.
[21]  M. Kalejs and J. Erenpreisa, “Cancer/testis antigens and gametogenesis: a review and “brain-storming” session,” Cancer Cell International, vol. 5, no. 1, article 4, 2005.
[22]  M. Kalejs, A. Ivanov, G. Plakhins et al., “Upregulation of meiosis-specific genes in lymphoma cell lines following genotoxic insult and induction of mitotic catastrophe,” BMC Cancer, vol. 6, article 6, 2006.
[23]  E. Marcon and P. B. Moens, “The evolution of meiosis: recruitment and modification of somatic DNA-repair proteins,” BioEssays, vol. 27, no. 8, pp. 795–808, 2005.
[24]  H. Bernstein, F. A. Hopf, and R. E. Michod, “The molecular basis of the evolution of sex,” Advances in Genetics, vol. 24, pp. 323–370, 1987.
[25]  H. Bernstein, H. C. Byerly, F. A. Hopf, and R. E. Michod, “Genetic damage, mutation, and the evolution of sex,” Science, vol. 229, no. 4719, pp. 1277–1281, 1985.
[26]  L. Hadany and J. M. Comeron, “Why are sex and recombination so common?” Annals of the New York Academy of Sciences, vol. 1133, pp. 26–43, 2008.
[27]  S. P. Otto and A. C. Gerstein, “Why have sex? The population genetics of sex and recombination,” Biochemical Society Transactions, vol. 34, no. part 4, pp. 519–522, 2006.
[28]  G. A. Brar and A. Amon, “Emerging roles for centromeres in meiosis I chromosome segregation,” Nature Reviews Genetics, vol. 9, no. 12, pp. 899–910, 2008.
[29]  J. Kimble, “Molecular regulation of the mitosis/meiosis decision in multicellular organisms,” Cold Spring Harbor Perspectives in Biology, vol. 3, no. 8, Article ID a002683, 2011.
[30]  Y. Watanabe, S. Shinozaki-Yabana, Y. Chikashige, Y. Hiraoka, and M. Yamamoto, “Phosphorylation of RNA-binding protein controls cell cycle switch from mitotic to meiotic in fission yeast,” Nature, vol. 386, no. 6621, pp. 187–190, 1997.
[31]  J. Kimble and S. L. Crittenden, “Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans,” Annual Review of Cell and Developmental Biology, vol. 23, pp. 405–433, 2007.
[32]  C. R. Eckmann, S. L. Crittenden, N. Suh, and J. Kimble, “GLD-3 and control of the mitosis/meiosis decision in the germline of Caenorhabditis elegans,” Genetics, vol. 168, no. 1, pp. 147–160, 2004.
[33]  E. L. Anderson, A. E. Baltus, H. L. Roepers-Gajadien et al., “Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 39, pp. 14976–14980, 2008.
[34]  H. Li, K. Palczewski, W. Baehr, and M. Clagett-Dame, “Vitamin A deficiency results in meiotic failure and accumulation of undifferentiated spermatogonia in prepubertal mouse testis,” Biology of Reproduction, vol. 84, no. 2, pp. 336–341, 2011.
[35]  Y. Watanabe, S. Yokobayashi, M. Yamamoto, and P. Nurse, “Pre-meiotic S phase is linked to reductional chromosome segregation and recombination,” Nature, vol. 409, no. 6818, pp. 359–363, 2001.
[36]  J. L. Gerton and R. S. Hawley, “Homologous chromosome interactions in meiosis: diversity amidst conservation,” Nature Reviews Genetics, vol. 6, no. 6, pp. 477–487, 2005.
[37]  S. Keeney, “Spo11 and the formation of DNA double-strand breaks in meiosis,” Genome Dynamics and Stability, vol. 2, pp. 81–123, 2008.
[38]  V. Borde, “The multiple roles of the Mre11 complex for meiotic recombination,” Chromosome Research, vol. 15, no. 5, pp. 551–563, 2007.
[39]  H. Niu, L. Wan, B. Baumgartner, D. Schaefer, J. Loidl, and N. M. Hollingsworth, “Partner choice during meiosis is regulated by Hop1-promoted dimerization of Mek1,” Molecular Biology of the Cell, vol. 16, no. 12, pp. 5804–5818, 2005.
[40]  H. Niu, L. Wan, V. Busygina et al., “Regulation of meiotic recombination via Mek1-mediated Rad54 phosphorylation,” Molecular Cell, vol. 36, no. 3, pp. 393–404, 2009.
[41]  H. Niu, X. Li, E. Job et al., “Mek1 kinase is regulated to suppress double-strand break repair between sister chromatids during budding yeast meiosis,” Molecular and Cellular Biology, vol. 27, no. 15, pp. 5456–5467, 2007.
[42]  K. Daniel, J. Lange, K. Hached et al., “Meiotic homologue alignment and its quality surveillance are controlled by mouse HORMAD1,” Nature Cell Biology, vol. 13, no. 5, pp. 599–610, 2011.
[43]  A. J. Rattray and J. N. Strathern, “Error-prone DNA polymerases: when making a mistake is the only way to get ahead,” Annual Review of Genetics, vol. 37, pp. 31–66, 2003.
[44]  G. E. Magni and R. C. von Borstel, “Different rates of spontaneous mutation during mitosis and meiosis in yeast,” Genetics, vol. 47, no. 8, pp. 1097–1108, 1962.
[45]  Q. Luo, Y. Lai, S. Liu, M. Wu, Y. Liu, and Z. Zhang, “Deregulated expression of DNA polymerase beta is involved in the progression of genomic instability,” Environmental and Molecular Mutagenesis, vol. 53, no. 5, pp. 325–333, 2012.
[46]  A. W. Plug, C. A. Clairmont, E. Sapi, T. Ashley, and J. B. Sweasy, “Evidence for a role for DNA polymerase β in mammalian meiosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 4, pp. 1327–1331, 1997.
[47]  D. Kidane, A. S. Jonason, T. S. Gorton et al., “DNA polymerase beta is critical for mouse meiotic synapsis,” The EMBO Journal, vol. 29, no. 2, pp. 410–423, 2010.
[48]  N. Bhattacharyya, H. C. Chen, L. Wang, and S. Banerjee, “Heterogeneity in expression of DNA polymerase β and DNA repair activity in human tumor cell lines,” Gene Expression, vol. 10, no. 3, pp. 115–123, 2002.
[49]  V. Poltoratsky, R. Prasad, J. K. Horton, and S. H. Wilson, “Down-regulation of DNA polymerase β accompanies somatic hypermutation in human BL2 cell lines,” DNA Repair, vol. 6, no. 2, pp. 244–253, 2007.
[50]  L. Servant, C. Cazaux, A. Bieth, S. Iwai, F. Hanaoka, and J.-S. Hoffmann, “A role for DNA polymerase β in mutagenic UV lesion bypass,” The Journal of Biological Chemistry, vol. 277, no. 51, pp. 50046–50053, 2002.
[51]  K. I. Ishiguro and Y. Watanabe, “Chromosome cohesion in mitosis and meiosis,” Journal of Cell Science, vol. 120, no. part 3, pp. 367–369, 2007.
[52]  K. Nasmyth and C. H. Haering, “The structure and function of SMC and kleisin complexes,” Annual Review of Biochemistry, vol. 74, pp. 595–648, 2005.
[53]  S. L. Page and R. S. Hawley, “Chromosome choreography: the meiotic ballet,” Science, vol. 301, no. 5634, pp. 785–789, 2003.
[54]  R. ?llinger, M. Alsheimer, and R. Benavente, “Mammalian protein SCP1 forms synaptonemal complex-like structures in the absence of meiotic chromosomes,” Molecular Biology of the Cell, vol. 16, no. 1, pp. 212–217, 2005.
[55]  Y. Watanabe and P. Nurse, “Cohesin Rec8 is required for reductional chromosome segregation at meiosis,” Nature, vol. 400, no. 6743, pp. 461–464, 1999.
[56]  S. C. Sun and N. H. Kim, “Spindle assembly checkpoint and its regulators in meiosis,” Human Reproduction Update, vol. 18, no. 1, pp. 60–72, 2012.
[57]  S. Yokobayashi, M. Yamamoto, and Y. Watanabe, “Cohesins determine the attachment manner of kinetochores to spindle microtubules at meiosis I in fission yeast,” Molecular and Cellular Biology, vol. 23, no. 11, pp. 3965–3973, 2003.
[58]  S. Hauf and Y. Watanabe, “Kinetochore orientation in mitosis and meiosis,” Cell, vol. 119, no. 3, pp. 317–327, 2004.
[59]  M. Eijpe, H. Offenberg, R. Jessberger, E. Revenkova, and C. Heyting, “Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1β and SMC3,” Journal of Cell Biology, vol. 160, no. 5, pp. 657–670, 2003.
[60]  Y. Yao and W. Dai, “Shugoshins function as a guardian for chromosomal stability in nuclear division,” Cell Cycle, vol. 11, no. 14, pp. 2631–2642, 2012.
[61]  E. Llano, R. Gómez, C. Gutiéerrez-Caballero et al., “Shugoshin-2 is essential for the completion of meiosis but not for mitotic cell division in mice,” Genes and Development, vol. 22, no. 17, pp. 2400–2413, 2008.
[62]  N. R. Kudo, M. Anger, A. H. F. M. Peters et al., “Role of cleavage by separase of the Rec8 kleisin subunit of cohesin during mammalian meiosis I,” Journal of Cell Science, vol. 122, no. part 15, pp. 2686–2698, 2009.
[63]  T. Ishiguro, K. Tanaka, T. Sakuno, and Y. Watanabe, “Shugoshin-PP2A counteracts casein-kinase-1-dependent cleavage of Rec8 by separase,” Nature Cell Biology, vol. 12, no. 5, pp. 500–506, 2010.
[64]  J. Tammela, A. A. Jungbluth, F. Qian et al., “SCP-1 cancer/testis antigen is a prognostic indicator and a candidate target for immunotherapy in epithelial ovarian cancer,” Cancer Immunity, vol. 4, p. 10, 2004.
[65]  M. Petronczki, M. F. Siomos, and K. Nasmyth, “Un ménage à quatre: the molecular biology of chromosome segregation in meiosis,” Cell, vol. 112, no. 4, pp. 423–440, 2003.
[66]  I. L. Brito, H. G. Yu, and A. Amon, “Condensins promote coorientation of sister chromatids during meiosis I in budding yeast,” Genetics, vol. 185, no. 1, pp. 55–64, 2010.
[67]  F. Monje-Casas, V. R. Prabhu, B. H. Lee, M. Boselli, and A. Amon, “Kinetochore orientation during meiosis is controlled by Aurora B and the monopolin complex,” Cell, vol. 128, no. 3, pp. 477–490, 2007.
[68]  I. L. Brito, F. Monje-Casas, and A. Amon, “The Lrs4-Csm1 monopolin complex associates with kinetochores during anaphase and is required for accurate chromosome segregation,” Cell Cycle, vol. 9, no. 17, pp. 3611–3618, 2010.
[69]  A. Tóth, K. P. Rabitsch, M. Gálová, A. Schleiffer, S. B. C. Buonomo, and K. Nasmyth, “Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I,” Cell, vol. 103, no. 7, pp. 1155–1168, 2000.
[70]  M. Schuh and J. Ellenberg, “Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes,” Cell, vol. 130, no. 3, pp. 484–498, 2007.
[71]  J. Dumont and A. Desai, “Acentrosomal spindle assembly and chromosome segregation during oocyte meiosis,” Trends in Cell Biology, vol. 22, no. 5, pp. 241–249, 2012.
[72]  T. S. Kitajima, S. A. Kawashima, and Y. Watanabe, “The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis,” Nature, vol. 427, no. 6974, pp. 510–517, 2004.
[73]  J. Basu, H. Bousbaa, E. Logarinho et al., “Mutations in the essential spindle checkpoint gene Bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila,” Journal of Cell Biology, vol. 146, no. 1, pp. 13–28, 1999.
[74]  S. Yamaguchi, A. Decottignies, and P. Nurse, “Function of Cdc2p-dependent Bub1p phosphorylation and Bub1p kinase activity in the mitotic and meiotic spindle checkpoint,” The EMBO Journal, vol. 22, no. 5, pp. 1075–1087, 2003.
[75]  S. Leland, P. Nagarajan, A. Polyzos et al., “Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 31, pp. 12776–12781, 2009.
[76]  C. Klebig, D. Korinth, and P. Meraldi, “Bub1 regulates chromosome segregation in a kinetochore-independent manner,” Journal of Cell Biology, vol. 185, no. 5, pp. 841–858, 2009.
[77]  H. Shigeishi, N. Oue, H. Kuniyasu et al., “Expression of Bub1 gene correlates with tumor proliferating activity in human gastric carcinomas,” Pathobiology, vol. 69, no. 1, pp. 24–29, 2001.
[78]  M. Shichiri, K. Yoshinaga, H. Hisatomi, K. Sugihara, and Y. Hirata, “Genetic and epigenetic inactivation of mitotic checkpoint genes hBUB1 and hBUBR1 and their relationship to survival,” Cancer Research, vol. 62, no. 1, pp. 13–17, 2002.
[79]  S. H. Doak, G. J. S. Jenkins, E. M. Parry, A. P. Griffiths, J. N. Baxter, and J. M. Parry, “Differential expression of the MAD2, BUB1 and HSP27 genes in Barrett's oesophagus—their association with aneuploidy and neoplastic progression,” Mutation Research, vol. 547, no. 1-2, pp. 133–144, 2004.
[80]  T. B. Lewis, J. E. Robison, R. Bastien et al., “Molecular classification of melanoma using real-time quantitative reverse transcriptase-polymerase chain reaction,” Cancer, vol. 104, no. 8, pp. 1678–1686, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413