全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Identification of Contaminated Cells with Viruses, Bacteria, or Fungi by Fourier Transform Infrared Microspectroscopy

DOI: 10.1155/2013/317458

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fourier transform infrared microspectroscopy (FTIR-M) can detect small molecular changes in cells and therefore was previously applied for the identification of different biological samples. In the present study, FTIR spectroscopy was used for the identification and discrimination of Vero cells infected with herpes viruses or contaminated with bacteria or fungi in cell culture. Vero cells in culture were infected herpes simplex virus type 1 (HSV-1) or contaminated with E. coli bacteria or Candida albicans fungi and analyzed by FTIR microscopy at 24?h postinfection/contamination. Specific different spectral changes were observed according to the infecting or contaminating agent. For instance, both pure fungi and cell culture contaminated with this fungi showed specific peaks at 1030?cm?1 and at 1373?cm?1 regions, while pure E. coli and cell culture contaminated with this bacteria showed a specific and unique peak at 1657?cm?1. These results support the potential of developing FTIR microspectroscopy as a simple, reagent free method for identification and discrimination between different tissue infection or contamination with various pathogens. 1. Introduction Serious human diseases are caused by different pathogens such as viruses, bacteria, or fungi. In many cases, it is difficult to distinguish between these various infections by routine physician inspection, particularly at early stages of the infection. There are several routine assays for detection of the responsible pathogens of such infections:(1)growing of the pathogen in culture and trying to identify it by microscopic observations. This assay is not always simple because each pathogen needs different growth conditions and takes relatively long time till getting the results depending on the pathogen (days to weeks). In addition, this assay is highly dependent on the physician qualification [1];(2)immune assays using specific antibodies [2]; (3)molecular assays using specific primers. Although these immune and molecular assays are highly specific, they are relatively expensive and not always available for all pathogens. Furthermore, in order to identify the cause of unclear infection, it might be necessary to examine the sample simultaneously by various assays because the conditions and techniques required for examining various pathogens are completely different. The detection and identification of pathogen infections by spectroscopic techniques is highly promising due to their sensitivity, rapidity, low expenses, and simplicity. Fourier transform infrared (FTIR) microscopy is considered as a

References

[1]  A. El Bedewi, G. El Anany, M. El Mofty, A. Kretlow, S. Park, and L. M. Miller, “The use of synchrotron infrared microspectroscopy in the assessment of cutaneous T-cell lymphoma vs. pityriasis lichenoides chronica,” Photodermatology, Photoimmunology & Photomedicine, vol. 26, no. 2, pp. 93–97, 2010.
[2]  P. Markoulatos, P. Fountoucidou, G. Marinakis, et al., “Clear detection and typing of herpes simplex virus types 1 and 2 by an indirect ELISA assay: comparison with three different combined methods-capture ELISA, restriction enzymes, and polymerase chain reaction,” Journal of Clinical Laboratory Analysis, vol. 11, no. 3, pp. 146–153, 1997.
[3]  H. Mantsch and D. Chapman, Infrared Spectroscopy of Biomolecules, John Wiley, 1996.
[4]  M. Diem, S. Boyston-White, and L. Chiriboga, “Infrared spectroscopy of cells and tissues: shining light onto a novel subject,” Applied Spectroscopy, vol. 53, no. 4, pp. 148A–161A, 1999.
[5]  D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature, vol. 351, no. 6321, pp. 81–82, 1991.
[6]  H. Gremlich and B. Yang, Infrared and Raman Spectroscopy of Biological Materials, Marcel Dekker, 2001.
[7]  P. Lasch, M. Boese, A. Pacifico, and M. Diem, “FT-IR spectroscopic investigations of single cells on the subcellular level,” Vibrational Spectroscopy, vol. 28, no. 1, pp. 147–157, 2002.
[8]  S. Argov, R. K. Sahu, E. Bernshtain et al., “Inflamatory bowel diseases as an intermediate stage between normal and cancer: a FTIR-microspectroscopy approach,” Biopolymers, vol. 75, no. 5, pp. 384–392, 2004.
[9]  T. Nakamura, J. G. Kelly, J. Trevisan et al., “Microspectroscopy of spectral biomarkers associated with human corneal stem cells,” Molecular Vision, vol. 16, pp. 359–368, 2010.
[10]  V. Erukhimovitch, M. Talyshinsky, Y. Souprun, and M. Huleihel, “Spectroscopic characterization of human and mouse primary cells, cell lines and malignant cells,” Photochemistry and Photobiology, vol. 76, no. 4, pp. 446–451, 2002.
[11]  E. Gazi, J. Dwyer, N. Lockyer et al., “The combined application of FTIR microspectroscopy and ToF-SIMS imaging in the study of prostate cancer,” Faraday Discussions, vol. 126, pp. 41–59, 2004.
[12]  E. Njoroge, S. R. Alty, M. R. Gani, and M. Alkatib, in Proceedings of the IEEE Engineering in Medicine & Biology Society, vol. 1, pp. 5338–5534, 2006.
[13]  E. Bogomolny, M. Huleihel, A. Salman, A. Zwielly, R. Moreh, and S. Mordechai, “Attenuated total reflectance spectroscopy: a promising technique for early detection of premalignancy,” Analyst, vol. 135, no. 8, pp. 1934–1940, 2010.
[14]  C. Petibois, B. Drogat, A. Bikfalvi, G. Déléris, and M. Moenner, “Histological mapping of biochemical changes in solid tumors by FT-IR spectral imaging,” FEBS Letters, vol. 581, no. 28, pp. 5469–5474, 2007.
[15]  M. J. Walsh, T. G. Fellous, A. Hammiche et al., “Fourier transform infrared microspectroscopy identifies symmetric modifications as a marker of the putative stem cell region of human intestinal crypts,” Stem Cells, vol. 26, no. 1, pp. 108–118, 2008.
[16]  D. E. Maziak, M. T. Do, F. M. Shamji, S. R. Sundaresan, D. G. Perkins, and P. T. T. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer Detection and Prevention, vol. 31, no. 3, pp. 244–253, 2007.
[17]  A. Salman, V. Erukhimovitch, M. Talyshinsky, M. Huleihil, and M. Huleihel, “FTIR spectroscopic method for detection of cells infected with herpes viruses,” Biopolymers, vol. 67, no. 6, pp. 406–412, 2002.
[18]  A. E. Bogomolny, M. Huleihel, Y. Suproun, R. K. Sahu, and S. Mordechai, “Early spectral changes of cellular malignant transformation using Fourier transform infrared microspectroscopy,” Journal of Biomedical Optics, vol. 12, no. 2, Article ID 024003, 2007.
[19]  V. Erukhimovitch, M. Karpasasa, and M. Huleihel, “Spectroscopic detection and identification of infected cells with herpes viruses,” Biopolymers, vol. 91, no. 1, pp. 61–67, 2009.
[20]  K. Maquelin, C. Kirschner, L.-P. Choo-Smith et al., “Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures,” Journal of Clinical Microbiology, vol. 41, no. 1, pp. 324–329, 2003.
[21]  C. A. Rebuffo-Scheer, C. Kirschner, M. Staemmler, and D. Naumann, “Rapid species and strain differentiation of non-tubercoulous mycobacteria by Fourier-Transform Infrared microspectroscopy,” Journal of Microbiological Methods, vol. 68, no. 2, pp. 282–290, 2007.
[22]  A. Tfayli, O. Piot, A. Durlach, P. Bernard, and M. Manfait, “Discriminating nevus and melanoma on paraffin-embedded skin biopsies using FTIR microspectroscopy,” Biochimica et Biophysica Acta, vol. 1724, no. 3, pp. 262–269, 2005.
[23]  N. S. Eikje, K. Aizawa, and Y. Ozaki, “Vibrational spectroscopy for molecular characterisation and diagnosis of benign, premalignant and malignant skin tumours,” Biotechnology Annual Review, vol. 11, pp. 191–225, 2005.
[24]  S. Wartewig, IR, and Raman Spectroscopy, John Wiley and Sons, New York, NY, USA, 2003.
[25]  D. Yang, D. Castro, I. El-Sayed, M. El-Sayed, R. Saxton, and Y. Nancy, vol. 2389 of Proceedings of SPIE, pp. 543–548, 1995.
[26]  R. K. Dukor, “Vibrational spectroscopy in the detection of cancer,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, Eds., p. 3335, John Wiley and Sons, 2001.
[27]  R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” Journal of Biomedical Optics, vol. 5, no. 1, pp. 5–16, 2000.
[28]  G. Deleris and C. Petibios, “Applications of FT-IR spectrometry to plasma contents analysis and monitoring,” Vibrational Spectroscopy, vol. 32, no. 1, pp. 129–134, 2003.
[29]  A. E. Taillandier and J. Liguier, in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, Eds., p. 3465, John Wiley and Sons, New York, NY, USA, 2001.
[30]  V. Erukhimovitch, M. Talyshinsky, Y. Souprun, and M. Huleihel, “Use of fourier transform infrared microscopy for the evaluation of drug efficiency,” Journal of Biomedical Optics, vol. 11, no. 6, Article ID 064009, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133