This study presents three simple, rapid, and accurate spectrophotometric methods for the determination of Rasagiline (RSG) in pharmaceutical preparations. The determination procedures depend on the reaction of RSG with chloranilic acid for method A, tetrachloro-1,4-benzoquinone for method B, and 7,7,8,8-tetracyanoquinodimethane for method C. The colored products were quantitated spectrophotometrically at 524, 535, and 843?nm for methods A, B, and C, respectively. Different variables affecting the reaction were optimized. Linearity ranges of the methods with good correlation coefficients (0.9988–0.9996) were observed as 25–300?μg?mL?1, 25–350?μg?mL?1, and 50–500?μg?mL?1 for methods A, B, and C, respectively. The formation of products takes place through different mechanisms. The sites of interaction were confirmed by elemental analysis using IR and 1H-NMR spectroscopy. The validation of the methods was carried out in terms of specificity, linearity, accuracy, precision, robustness, limit of detection, and limit of quantitation. No interference was observed from concomitants usually present in dosage forms. The methods were applied successfully to the determination of RSG in pharmaceutical preparations. 1. Introduction In Parkinson’s disease, one of the most prominent pathologies is the progressive degeneration of melanin-containing neurons in the substantia nigra pars com-pacta, resulting in the depletion of nigrostriatal dopamine [1]. Rasagiline (RSG) is a potent selective irreversible inhibitor of monoamine oxidase type B (2) and has been used for the treatment of idiopathic Parkinson’s disease [2]. The reported analytical methods for determination of RSG include high-performance liquid chromatography (HPLC) [3–6], spectrophotometry [7, 8], and gas chromatography combined with mass spectrometry (GC-MS) [9]. No spectrophotometric method using π-acceptors was reported in the literature. π-acceptors such as chloranilic acid (CA), tetrachloro-1,4-benzoquinone (p-chloranil), and 7,7,8,8-tetracyanoquinodimethane (TCNQ) are known to yield charge transfer (CT) complexes and radical anions with a variety of electron donors [10–15]. The spectrophotometric methods, based on these interactions, are usually simple and applicable for drug substances. Therefore, the aim of the present study was directed to investigate simple, rapid, sensitive, and cost-effective spectrophotometric methods based on the reactions using π-acceptors. The developed analytical procedures depend on the reaction of RSG with CA is expressed as method A, with p-chloranil is expressed as method
References
[1]
A. Samii, J. G. Nutt, and B. R. Ransom, “Parkinson's disease,” The Lancet, vol. 363, no. 9423, pp. 1783–1793, 2004.
[2]
J. J. Chen, D. M. Swope, and K. Dashtipour, “Comprehensive review of rasagiline, a second-generation monoamine oxidase inhibitor, for the treatment of Parkinson's Disease,” Clinical Therapeutics, vol. 29, no. 9, pp. 1825–1849, 2007.
[3]
M. Fernandez, E. Barica, and S. Negro, “Development and validation of a reverse phase liquid chromatography method for the quantification of rasagiline mesylate in biodegradable PLGA microspheres,” Journal of Pharmaceutical and Biomedical Analysis, vol. 49, pp. 1185–1191, 2009.
[4]
R. N. Kumar, G. N. Rao, and P. Y. Naidu, “Stability indicating fast LC method for determination of ceftriaxone and tazobactam for injection related substances in bulk and pharmaceutical formulation,” International Journal of Applied Biology and Pharmaceutical Technology, vol. 1, no. 1, pp. 145–157, 2010.
[5]
X. Chen, X. Duan, J. Ma, P. Deng, H. Wang, and D. Zhong, “Validated LC-MS/MS method for quantitative determination of rasagiline in human plasma and its application to a pharmacokinetic study,” Journal of Chromatogr B, vol. 873, pp. 203–208, 2008.
[6]
M. Song, L. Wang, H. Zhao, et al., “Rapid and sensitive liquid chromatography-tandem mass spectrometry: assay development, validation and application to a human pharmacokinetic study,” Journal of Chromatography B, vol. 875, pp. 515–521, 2008.
[7]
G. Devala Rao, S. Kathirvel, and S. V. Satyanarayana, “Simple spectrophotometric methods for the determination of rasagiline mesylate in pharmaceutical dosage form,” Journal of Pharmacy Research, vol. 4, no. 1, pp. 61–62, 2011.
[8]
B. Rama and K. Preeti, “UV Spectrophotometric method for the determination of rasagiline mesylate in bulk and pharmaceutical formulations,” International Journal of Pharmaceutical Sciences Review and Research, vol. 5, no. 1, pp. 5–7, 2010.
[9]
J. J. Thébault, M. Guillaume, and R. Levy, “Tolerability, safety, pharmacodynamics, and pharmacokinetics of rasagiline: a potent, selective, and irreversible monoamine oxidase type B inhibitor,” Pharmacotherapy, vol. 24, no. 10, pp. 1295–1305, 2004.
[10]
Z. Aydogmus, “Highly sensitive and selective spectrophotometric and spectrofluorimetric methods for the determination of ropinirole hydrochloride in tablets,” Spectrochimica Acta Part A, vol. 70, no. 1, pp. 69–78, 2008.
[11]
F. A. Siddiqui, M. S. Arayne, N. Sultana et al., “Spectrophotometric determination of gabapentin in pharmaceutical formulations using ninhydrin and π-acceptors,” European Journal of Medicinal Chemistry, vol. 45, no. 7, pp. 2761–2767, 2010.
[12]
K. Basavaiah, “Determination of some psychotropic phenothiazine drugs by charge-transfer complexation reaction with chloranilic acid,” Farmaco, vol. 59, no. 4, pp. 315–321, 2004.
[13]
N. S. Nahla, A. A. R. Sawsan, A. A. Shimaa, and E. K. Naglaa, “Spectrophotometric determination and thermodynamic studies of the charge transfer complexes of azelastine-HCl,” Bulletin of Faculty of Pharmacy, Cairo University, vol. 49, no. 1, pp. 13–18, 2011.
[14]
H. S. Bazzi, A. Mostafa, S. Y. AlQaradawi, and E.-M. Nour, “Synthesis and spectroscopic structural investigations of the charge-transfer complexes formed in the reaction of 2,6-diaminopyridine with π-acceptors TCNE, chloranil, and DDQ,” Journal of Molecular Structure, vol. 842, no. 1–3, pp. 1–5, 2007.
[15]
E. Khaled, “Spectrophotometric determination of terfenadine in pharmaceutical preparations by charge-transfer reactions,” Talanta, vol. 75, no. 5, pp. 1167–1174, 2008.
[16]
P. Job, “Formation and stability of inorganic complexes in solution,” Analytical Chemistry, vol. 9, pp. 113–203, 1928.
[17]
ICH, In: international Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, Validation of Analytical Procedures: text and Methodology Q2 (R1), 2005.
[18]
A. Pawlukoj?, G. Bator, L. Sobczyk, E. Grech, and J. Nowicka-Scheibe, “Inelastic neutron scattering, Raman, infrared and DFT theoretical studies on chloranilic acid,” Journal of Physical Organic Chemistry, vol. 16, no. 10, pp. 709–714, 2003.
[19]
P. Larkin, Infrared and Raman Spectroscopy, Principles and Spectral Interpretation, Elsevier, Waltham, Mass, USA, 2011.
[20]
T. Murata, Y. Morita, K. Fukui et al., “Phenalenyl-based highly conductive molecular systems with hydrogen-bonded networks: synthesis, physical properties, and crystal structures of 1,3- and 1,6-diazaphenalenes, and their protonated salts and charge-transfer complexes with TCNQ,” Bulletin of the Chemical Society of Japan, vol. 79, no. 6, pp. 894–913, 2006.
[21]
J. Sterling, et al., Rasagiline formulations and processes for their preparation, United States Patent, US, 7598420B1, 2009.
[22]
A. M. A. Adam, “Synthesis, spectroscopic, thermal and antimicrobial investigations of charge-transfer complexes formed from the drug procaine hydrochloride with quinol, picric acid and TCNQ,” Journal of Molecular Structure, vol. 1030, pp. 26–39, 2012.