This paper develops a rapid method for discriminating the geographical origins and age of roasted Torreya grandis seeds by near infrared (NIR) spectroscopic analysis and pattern recognition. 337 samples were collected from three main producing areas and produced in the last two years. The objective of geographical origins analysis is to discriminate the seeds from Fengqiao with a protected geographical indication (PGI) from those of another two provinces. Age classification is aimed to detect the old seeds produced in the last year from the freshly produced ones. Partial least squares discriminant analysis (PLSDA) was used to develop classification models, and the influence of data preprocessing methods on classification performance was also investigated. Taking second-order derivatives of the raw spectra proves to be the most proper and effective preprocessing method, which can remove baselines and backgrounds and reduce model complexity. With second derivative spectra, the sensitivity and specificity were 0.939 and 0.871 for age discrimination, respectively. Perfect classification was obtained, and both sensitivity and specificity were 1 for discrimination of geographical origins. 1. Introduction Chinese Torreya (T. grandis), a species of conifer in the Cephalotaxaceae family, is a rare cash crop tree endemic to southern and eastern China [1, 2]. The plant has been extensively used to cure cough, rheumatism, and intestine verminosis as a potent folk medicine. Various chemical components have been identified in T. grandis with an extensive spectrum of biological and medical activities, including anti-inflammatory, antihelmintic, antitussive, carminative, laxative, antifungal, antibacterial, and antitumor activities [3–7]. Its seeds are rich in proteins, fatty acids, carbohydrates, calcium, phosphorus, and iron [8]. Due to the high nutritional value, T. grandis seeds are served as a high-quality nut, and cakes, biscuits, and candies made from the seed kernels are also very popular. The seeds have an oil content of 54.62%–61.47% [8], and the oil is bright yellow with pleasant fruit flavors. The oil contains a very high level of unsaturated fatty acids, which accounts for 79.41% of the total fatty acids [8]. T. grandis seed oil is valued as a healthy and functional edible oil, and investigations have demonstrated its effects in modifying lipid metabolism, lowering triacylglycerol and cholesterol levels, and preventing atherosclerosis [9–13]. T. grandis seeds are sold in the form of a roasted nut, and the oil is often extracted by expressing the roasted
References
[1]
X. Wang, K. Wang, and B. Zhou, “Object-based classification of IKONOS data for endemic Torreya mapping,” Procedia Environmental Sciences, vol. 10, pp. 1887–1891, 2011.
[2]
D. C. Hao, P. G. Xiao, B. Huang, G. B. Ge, and L. Yang, “Interspecific relationships and origins of Taxaceae and Cephalotaxaceae revealed by partitioned Bayesian analyses of chloroplast and nuclear DNA sequences,” Plant Systematics and Evolution, vol. 276, no. 1-2, pp. 89–104, 2008.
[3]
B. Chen, X. Cui, X. Zhao et al., “Antioxidative and acute antiinflammatory effects of Torreya grandis,” Fitoterapia, vol. 77, no. 4, pp. 262–267, 2006.
[4]
M. K. Saeed, Y. Deng, R. Dai, W. Li, Y. Yu, and Z. Iqbal, “Appraisal of antinociceptive and anti-inflammatory potential of extract and fractions from the leaves of Torreya grandis Fort Ex. Lindl,” Journal of Ethnopharmacology, vol. 127, no. 2, pp. 414–418, 2010.
[5]
J. Wang, Y. Huang, M. Fang et al., “Brefeldin A, a cytotoxin produced by Paecilomyces sp. and Aspergillus clavatus isolated from Taxus mairei and Torreya grandis,” FEMS Immunology and Medical Microbiology, vol. 34, no. 1, pp. 51–57, 2002.
[6]
B. Galli, F. Gasparrini, V. Lanzotti et al., “Grandione, a new heptacyclic dimeric diterpene from Torreya grandis Fort.,” Tetrahedron, vol. 55, no. 37, pp. 11385–11394, 1999.
[7]
Y. Huang, J. Wang, G. Li, Z. Zheng, and W. Su, “Antitumor and antifungal activities in endophytic fungi isolated from pharmaceutical plants Taxus mairei, Cephalataxus fortunei and Torreya grandis,” FEMS Immunology and Medical Microbiology, vol. 31, no. 2, pp. 163–167, 2001.
[8]
Z. J. Li, C. F. Luo, X. J. Cheng, X. J. Feng, and W. W. Yu, “Component analysis and nutrition evaluation of seeds of Torreya grandis ‘Merrillii’,” Journal of Zhejiang Forestry College, vol. 22, pp. 540–544, 2005.
[9]
R. L. Wolff, F. Pédrono, A. M. Marpeau, W. W. Christie, and F. D. Gunstone, “The seed fatty acid composition and the distribution of Δ5-olefinic acids in the triacylglycerols of some Taxaceae (Taxus and Torreya),” Journal of the American Oil Chemists' Society, vol. 75, no. 11, pp. 1637–1641, 1998.
[10]
R. L. Wolff, F. Pédrono, A. M. Marpeau, and F. D. Gunstone, “Seed fatty acid composition and the distribution of Δ5-olefinic acids in the triacylglycerols of some Taxares (Cephalotaxus and Podocarpus),” Journal of the American Oil Chemists' Society, vol. 76, no. 4, pp. 469–473, 1999.
[11]
Z. Chen, Z. Chen, L. Hou, Z. Xu, and H. Zheng, “The preventive effect of the oil from the seed of Torreya grandis cv. merrillii on experimental atherosclerosis in rats,” Journal of Chinese Medicinal Materials, vol. 23, no. 9, pp. 551–553, 2000.
[12]
Y. Endo, Y. Osada, F. Kimura, and K. Fujimoto, “Effects of Japanese torreya (Torreya nucifera) seed oil on lipid metabolism in rats,” Nutrition, vol. 22, no. 5, pp. 553–558, 2006.
[13]
Y. Endo, K. Tsunokake, and I. Ikeda, “Effects of non-methylene-interrupted polyunsaturated fatty acid, sciadonic (All-cis-5,11,14-eicosatrienoic acid) on lipid metabolism in Rats,” Bioscience, Biotechnology and Biochemistry, vol. 73, no. 3, pp. 577–581, 2009.
[14]
L. Song, H. Gao, L. Ge et al., “Effects of different packaging on lipid peroxidation and antioxidant ability of Torreya grandis nuts during storage at room temperature,” Scientia Silvae Sinicae, vol. 45, pp. 49–53, 2009.
[15]
F. M. Hu and Z. E. Ding, “Quality studies of three types of Huangshan Chinese Torreya,” Journal of Central South Forestry University, vol. 23, pp. 1–4, 2003.
[16]
L. Ge, H. Gao, H. Chen et al., “Effect of processing on lipid oxidation and antioxidant ability of Torreya grandis,” Journal of the Chinese Cereals and Oils Association, vol. 26, pp. 42–46, 2011.
[17]
R. Karoui, G. Downey, and C. Blecker, “Mid-infrared spectroscopy coupled with chemometrics: a tool for the analysis of intact food systems and the exploration of their molecular structure-quality relationships—a review,” Chemical Reviews, vol. 110, no. 10, pp. 6144–6168, 2010.
[18]
H. Cen and Y. He, “Theory and application of near infrared reflectance spectroscopy in determination of food quality,” Trends in Food Science and Technology, vol. 18, no. 2, pp. 72–83, 2007.
[19]
R. Hajian and A. Soltaninezhad, “The spectrophotometric multicomponent analysis of a ternary mixture of paracetamol, aspirin, and caffeine by the double divisor-ratio spectra derivative method,” Journal of Spectroscopy, vol. 2013, Article ID 405210, 7 pages, 2013.
[20]
G. Yildiz, R. L. Wehling, and S. L. Cuppett, “Method for determining oxidation of vegetable oils by near-infrared spectroscopy,” Journal of the American Oil Chemists' Society, vol. 78, no. 5, pp. 495–502, 2001.
[21]
G. Knothe, “Analyzing biodiesel: Standards and other methods,” Journal of the American Oil Chemists' Society, vol. 83, no. 10, pp. 823–833, 2006.
[22]
M. Barker and W. Rayens, “Partial least squares for discrimination,” Journal of Chemometrics, vol. 17, no. 3, pp. 166–173, 2003.
[23]
M. Hubert, P. Rousseeuw, and T. Verdonck, “Robust PCA for skewed data and its outlier map,” Computational Statistics and Data Analysis, vol. 53, no. 6, pp. 2264–2274, 2009.
[24]
A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Analytical Chemistry, vol. 36, no. 8, pp. 1627–1639, 1964.
[25]
R. J. Barnes, M. S. Dhanoa, and S. J. Lister, “Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra,” Applied Spectroscopy, vol. 43, no. 5, pp. 772–777, 1989.
[26]
R. D. Snee, “Validation of regression models, methods and examples,” Technometrics, vol. 19, pp. 415–428, 1977.
[27]
Q. S. Xu and Y. Z. Liang, “Monte Carlo cross validation,” Chemometrics and Intelligent Laboratory Systems, vol. 56, pp. 1–11, 2001.