全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

XPS Study of Mechanically Activated YBa2Cu3O6+δ and NdBa2Cu3O6+δ

DOI: 10.1155/2013/217268

Full-Text   Cite this paper   Add to My Lib

Abstract:

Oxides RBa2Cu3O6+δ (R=Y, Nd) subjected to mechanical activation in AGO-2 mill have been studied by X-ray photoelectron spectroscopy (XPS), thermal analysis, and magnetometry. It has been shown that mechanoactivation accelerates chemical degradation under the impact of H2O and CO2 in YBa2Cu3O6+δ samples. Degradation occurs in the standard way. Investigation of mechanically activated NdBa2Cu3O6+δ has revealed other results. It has been suggested that CO2 can diffuse into its structure more freely than in YBa2Cu3O6+δ; as a result, carbonization may proceed directly in the volume of NdBa2Cu3O6+δ and independently of the hydrolysis process. In addition, the mechanism of interaction between the oxide and water is not active and not “traditional” for the homologous series REBa2Cu3O6+δ (where RE = rare earth and Y)—the characteristic “color” phase (Nd2BaCuO5) is not formed during hydrolysis. It is known that high-temperature treatment of NdBa2Cu3O6+δ oxide results in partial substitution of cations Ba by Nd; which is accompanied by decrease in the superconducting transition temperature and formation of the impurity phase Ba2Cu3O5+y. According to our data, mechanical activation of the resulting solid solution Nd1+xBa2?xCu3O6+δ unexpectedly has led to the reverse redistribution of cations, which has been manifested in the complete disappearance of the impurity phase and increase in . 1. Introduction Compounds RBa2Cu3O6+δ (R=Y and Ln elements) are well known as high-temperature superconductors with the temperature of the transition to the superconducting state of 90–93?K [1]. The composition with R=Y is a standard material for superconducting electronics under development, cooled with liquid nitrogen [2, 3], the magnetic field sensor of π SQUID type [2], high current cables [4], and other products. Besides, this compound has very significant oxygen diffusion parameters, and there is an intention to use it as oxygen-ion conductor [5]. It is also known that the replacement of yttrium by neodymium results in the emergence of so-called “anomalous peak effect” [6], which leads to significant improvement of the superconducting transport properties of the material. An additional advantage of the oxide NdBa2Cu3O6+δ (Nd-123) is its higher chemical stability by comparison with YBa2Cu3O6+δ (Y-123) [7, 8]. The disadvantage of Nd-123 is ease of substitution of neodymium by barium ions in their structural positions during high temperature annealing [8–10], with the result that the temperature of the transition to the superconducting state of the solid solution Nd1+xBa2?xCu3O6+δ

References

[1]  I. E. Graboi, A. R. Kaul', and G. Yu. Metlin, “Advances in science and technology,” in Solid State Chemistry, pp. 3–142, VINITI AN SSSR, Moscow, Russia, 1989.
[2]  S. Anders, M. G. Blamire, F.-Im. Buchholz et al., “European roadmap on superconductive electronics—status and perspectives,” Physica C, vol. 470, no. 23-24, pp. 2079–2126, 2010.
[3]  B. Ruck, B. Oelze, R. Dittmann et al., “Measurement of the dynamic error rate of a high temperature superconductor rapid single flux quantum comparator,” Applied Physics Letters, vol. 72, no. 18, pp. 2328–2330, 1998.
[4]  M. W. Rupich, X. Li, C. Thieme et al., “Advances in second generation high temperature superconducting wire manufacturing and R&D at American superconductor corporation,” Superconductor Science and Technology, vol. 23, no. 1, Article ID 014015, 2010.
[5]  A. Rakitin, M. Kobayashi, and A. P. Litvinchuk, “Superionic behavior of high-temperature superconductors,” Physical Review B, vol. 55, no. 1, pp. 89–92, 1997.
[6]  T. Kagiyama, J. Shimoyama, K. D. Otzschi et al., “Effect of cation composition and oxygen nonstoichiometry on - properties of Nd123,” Physica C, vol. 341–348, no. 2, pp. 1445–1446, 2000.
[7]  M. Badaye, J. G. Wen, K. Fukushima et al., “Superior properties of NdBa2Cu3Oy over YBa2Cu3Ox thin films,” Superconductor Science and Technology, vol. 10, no. 11, pp. 825–830, 1997.
[8]  C. Cantoni, D. P. Norton, D. M. Kroeger et al., “Phase stability for the in situ growth of Nd1+xBa2-xCu3Oy films using pulsed-laser deposition,” Applied Physics Letters, vol. 74, no. 1, pp. 96–98, 1999.
[9]  E. A. Goodilin, N. N. Oleynikov, E. V. Antipov et al., “Phase stability for the in situ growth of Nd1+xBa2-xCu3Oy films using pulsed-laser deposition,” Physica C, vol. 272, 65 pages, 1996.
[10]  E. Guilmeau, F. Giovannelli, I. Monot-Laffez, S. Marinel, J. Provost, and G. Desgardin, “Top seeding melt texture growth of NdBaCuO pellets in air,” The European Physical Journal, vol. 13, no. 3, pp. 157–160, 2001.
[11]  A. I. Ancharov, T. F. Grigor'eva, T. Yu. Kiseleva, A. A. Novakova, et al., in Mechanocomposites-Precursors for the Creation of Materials with New Properties, O. I. Lomovskii, Ed., p. 424, Izd-vo. SO RAN, Novosibirsk, Russia, 2010.
[12]  A. Hamrita, F. Ben Azzouz, A. Madani, and M. Ben Salem, “Magnetoresistivity and microstructure of YBa2Cu3Oy prepared using planetary ball milling,” Physica C, vol. 472, no. 1, pp. 34–38, 2012.
[13]  R. P. Vasquez, “Intrinsic photoemission signals, surface preparation, and surface stability of high temperature superconductors,” Journal of Electron Spectroscopy and Related Phenomena, vol. 66, no. 3-4, pp. 209–222, 1994.
[14]  S. S. Gorelik, L. N. Rastorguev, and A. Yu. Skakov, in RentgenographIcheskII I ElektronographIcheskII AnalIz, p. 368, Izd-vo Metallurgia, Moscow, Russia, 1970.
[15]  M. V. Reshetniak and O. V. Sobol, Program for diffraction analysis “New_Profile”(Last update 10. 02. 2007) Version 3. 4. 400 (Freeware) WIN9x/ME/NT/2K/XP Copyright (c) 1992-2007 ReMax SoftWare 2000.
[16]  M. Wegmann, L. Watson, and A. Hendry, “XPS analysis of submicrometer barium titanate powder,” Journal of the American Ceramic Society, vol. 87, no. 3, pp. 371–377, 2004.
[17]  A. B. Christie, J. Lee, I. Sutherland, and J. M. Walls, “An XPS study of ion-induced compositional changes with group II and group IV compounds,” Applications of Surface Science, vol. 15, no. 1–4, pp. 224–237, 1983.
[18]  U. A. Joshi, S. Yoon, S. Balk, and J. S. Lee, “Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: a structural investigation,” Journal of Physical Chemistry B, vol. 110, no. 25, pp. 12249–12256, 2006.
[19]  R. Caracciolo, “Chemical characterization techniques for thin films,” in Ceramic Films and Coatings, J. B. Wachtman and R. A. Haber, Eds., p. 376, New Jersey, NJ, USA, 1992.
[20]  I. N. Shabanova, Y. A. Naimushina, and N. S. Terebova, “Composition and temperature dependence of a Y-Ba-Cu-O HTSC electronic structure,” Superconductor Science and Technology, vol. 15, no. 7, pp. 1030–1033, 2002.
[21]  J. Beyer, T. Schurig, S. Menkel, Z. Quan, and H. Koch, “XPS investigation of the surface composition of sputtered YBCO thin films,” Physica C, vol. 246, no. 1-2, pp. 156–162, 1995.
[22]  C. C. Chang, M. S. Hegde, X. D. Wu et al., “Surface layers on superconducting Y-Ba-Cu-O films studied with x-ray photoelectron spectroscopy,” Applied Physics Letters, vol. 55, no. 16, pp. 1680–1682, 1989.
[23]  X. D. Wu, A. Inam, M. S. Hegde et al., “Crystalline perfection of as-deposited high-Tc superconducting thin-film surfaces: ion channeling and x-ray photoelectron spectroscopy study,” Physical Review B, vol. 38, no. 13, pp. 9307–9310, 1988.
[24]  P. Rajasekar, P. Chakraborty, S. K. Bandyopadhyay, P. Barat, and P. Sen, “X-ray photoelectron spectroscopy study of oxygen and argon annealed YBa22Cu3O7-δ,” Modern Physics Letters B, vol. 12, no. 6-7, pp. 239–245, 1998.
[25]  J. Halbritter, P. Walk, H. J. Mathes, B. Haeuser, and H. Rogalla, “ARXPS-studies of ?-axis textured YBa2Cu3Ox-films,” Physica C, vol. 153–155, no. 1, pp. 127–128, 1988.
[26]  T. J. ?arapatka and P. Miku?ík, “XPS study of Pb/YBaCuO thin-film tunnel contact,” Applied Surface Science, vol. 68, no. 1, pp. 35–40, 1993.
[27]  J. A. T. Verhoeven and H. Van Doveren, “An XPS investigation of the interaction of CH4, C2H2, C2H4 and C2H6 with a barium surface,” Surface Science, vol. 123, no. 2-3, pp. 369–383, 1982.
[28]  C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Mullenberg, Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corp, Eden Prairie, Minn, USA, 1979.
[29]  M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn,” Applied Surface Science, vol. 257, no. 3, pp. 887–898, 2010.
[30]  X. Y. Fan, Z. G. Wu, P. X. Yan et al., “Fabrication of well-ordered CuO nanowire arrays by direct oxidation of sputter-deposited Cu3N film,” Materials Letters, vol. 62, no. 12-13, pp. 1805–1808, 2008.
[31]  S. J. Kerber, J. J. Bruckner, K. Wozniak, S. Seal, S. Hardcastle, and T. L. Barr, “Nature of hydrogen in x-ray photoelectron spectroscopy: general patterns from hydroxides to hydrogen bonding,” Journal of Vacuum Science and Technology A, vol. 14, no. 3, pp. 1314–1320, 1996.
[32]  G. Moretti, G. Fierro, M. Lo Jacono, and P. Porta, “Characterization of CuO-ZnO catalysts by X-ray photoelectron spectroscopy: precursors, calcined and reduced samples,” Surface and Interface Analysis, vol. 14, no. 6-7, pp. 325–336, 1989.
[33]  H. Van Doveren and J. A. T. H. Verhoeven, “XPS spectra of Ca, Sr, Ba and their oxides,” Journal of Electron Spectroscopy and Related Phenomena, vol. 21, no. 3, pp. 265–273, 1980.
[34]  B. V. Crist, Handbooks of Monochromatic XPS Spectra. Volume 2—Commercially pure binary oxides, XPS International LLC, Leona, Tex, USA, 2005.
[35]  D. D. Sarma and C. N. R. Rao, “XPES studies of oxides of second- and third-row transition metals including rare earths,” Journal of Electron Spectroscopy and Related Phenomena, vol. 20, no. 1, pp. 25–45, 1980.
[36]  V. I. Nefedov and A. N. Sokolov, “Degradatzia visokotemperaturnich sverchprovodnikov pri khimicheskich vozdeistviach,” Zhurnal Neorganicheskoi Khimii, vol. 34, no. 11, pp. 2723–2739, 1989.
[37]  Y. Uwamino, T. Ishizuka, and H. Yamatera, “X-ray photoelectron spectroscopy of rare-earth compounds,” Journal of Electron Spectroscopy and Related Phenomena, vol. 34, no. 1, pp. 67–78, 1984.
[38]  M. P. Seah and W. A. Dench, “Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids,” Surface and Interface Analysis, vol. 1, no. 1, pp. 2–11, 1979.
[39]  C. H. Lin, H. C. I. Kao, and C. M. Wang, “Kinetics and stability of R(Ba1.5Sr0.5)Cu3Oy (R = La, Nd, Sm, Eu, Gd, Dy, Ho) superconductors in water,” Materials Chemistry and Physics, vol. 82, no. 2, pp. 435–439, 2003.
[40]  A. G. Knizhnik, R. A. Stukan, and G. O. Eremenko, “Study the interaction between europium HTSC of 123 type and water,” Sverkhprovodimost, vol. 4, no. 1, pp. 177–182, 1991 (Russian).
[41]  J. Zhou, R. K. Lo, J. T. McDevitt et al., “Development of a reliable materials base for superconducting electronics,” Journal of Materials Research, vol. 12, no. 11, pp. 2958–2975, 1997.
[42]  S. B. Schougaard, M. F. Ali, and J. T. McDevitt, “Evidence for high stability against water corrosion of NdBa2Cu3 relative to YBa2Cu3O and EuBa2Cu3O ,” Applied Physics Letters, vol. 84, no. 7, pp. 1144–1146, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133