全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Inclusion Complexes of Sunscreen Agents with β-Cyclodextrin: Spectroscopic and Molecular Modeling Studies

DOI: 10.1155/2013/841409

Full-Text   Cite this paper   Add to My Lib

Abstract:

The inclusion complexes of selected sunscreen agents, namely, oxybenzone (Oxy), octocrylene (Oct), and ethylhexyl-methoxycinnamate (Cin) with β-cyclodextrin (β-CD) were studied by UV-Vis spectroscopy, differential scanning calorimetry (DSC), 13C NMR techniques, and molecular mechanics (MM) calculations and modeling. Molecular modeling (MM) study of the entire process of the formation of 1?:?1 stoichiometry sunscreen agent/β-cyclodextrin structures has been used to contribute to the understanding and rationalization of the experimental results. Molecular mechanics calculations, together with 13C NMR measurements, for the complex with β-CD have been used to describe details of the structural, energetic, and dynamic features of host-guest complex. Accurate structures of CD inclusion complexes have been derived from molecular mechanics (MM) calculations and modeling. The photodegradation reaction of the sunscreen agents' molecules in lotion was explored using UV-Vis spectroscopy. It has been demonstrated that the photostability of these selected sunscreen agents has been enhanced upon forming inclusion complexes with β-CD in lotion. The results of this study demonstrate that β-CD can be utilized as photostabilizer additive for enhancing the photostability of the selected sunscreen agents' molecules. 1. Introduction Cyclodextrins (CDs) are cyclic oligosaccharides composed of glucopyranose units linked together by oxygen bridges at the 1 and 4 positions (α,1,4-glycoside bonds) [1]. This class of organized media possesses a hydrophilic exterior and a hydrophobic cavity due to C3H, C5H, and C6H hydrogens and O4 ether oxygen which enables the CDs to extract a variety of organic guest molecules of appropriate size and hydrophobicity from the bulk aqueous solution [2–4]. The most familiar members are α-, β-, and γ-CDs consisting of six, seven, and eight glucose units, respectively. Complexation of various compounds with CDs leads to an enhancement in some of the characteristics of the guest molecules, such as thermalstability and photostability, bioavailability, membrane permeability, and solubility [5]. Thus, CDs and their derivatives have been employed in a variety of fields such as catalysis, electrochemical analysis, pharmaceutical and food industries [6–12], separation sciences [13–18], and biotechnology [19, 20]. In cosmetics the use of CDs is still having a shortage in the literature information in comparison with other areas, whereas most publications are patents. It is noteworthy to mention that significant alterations in the physicochemical properties of

References

[1]  M. L. Bender and M. Komiyama, Cyclodextrin Chemistry, Springer, Berlin, Germany, 1978.
[2]  H. Dodziuk, Cyclodextrins and Their Complexes: Chemistry, Analytical Methods, Applications, Wiley-VCH, Weinheim, Germany, 2006.
[3]  J. Szejtli, “Introduction and general overview of cyclodextrin chemistry,” Chemical Reviews, vol. 98, no. 5, pp. 1743–1753, 1998.
[4]  D. Duchêne, Cyclodextrins and Their Industrial Uses, De Santé, Paris, France, 1987.
[5]  S. Z. Lin, D. Wouessidjewe, M. C. Poelman, and D. Duchêne, “Indomethacin and cyclodextrin complexes,” International Journal of Pharmaceutics, vol. 69, no. 3, pp. 211–219, 1991.
[6]  A. D. Bani-Yaseen, N. F. Al-Rawashdeh, and I. Al-Momani, “Influence of inclusion complexation with β-cyclodextrin on the photostability of selected imidazoline-derived drugs,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 63, no. 1-2, pp. 109–115, 2009.
[7]  A. A. Dawoud and N. Al-Rawashdeh, “Spectrofluorometric, thermal, and molecular mechanics studies of the inclusion complexation of selected imidazoline-derived drugs with β-cyclodextrin in aqueous media,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 60, no. 3-4, pp. 293–301, 2008.
[8]  N. A. F. Al-Rawashdeh, “Interactions of nabumetone with γ-cyclodextrin studied by fluorescence measurements,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 51, no. 1, pp. 27–32, 2005.
[9]  N. A. F. Al-Rawashdeh, I. A. Abu-Yousef, and S. M. Kanan, “Cyclic voltammetry study of asymmetrical trityl di- and trisulfides on coated and bare gold electrodes,” Journal of Physical Chemistry C, vol. 112, no. 17, pp. 7062–7068, 2008.
[10]  N. A. F. Al-Rawashdeh, A. M. Al-Ajlouni, S. B. Bukallah, and N. Bataineh, “Activation of H2O2 by methyltrioxorhenium(VII) inside b-cyclodextrin,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 70, no. 3-4, pp. 471–480, 2011.
[11]  G. Cravotto, A. Binello, E. Baranelli, P. Carraro, and F. Trotta, “Cyclodextrins as food additives and in food processing,” Current Nutrition and Food Science, vol. 2, no. 4, pp. 343–350, 2006.
[12]  T. Loftsson and D. Duchêne, “Cyclodextrins and their pharmaceutical applications,” International Journal of Pharmaceutics, vol. 329, pp. 1–11, 2007.
[13]  D. L. Kirschner, M. Jaramillo, and T. K. Green, “Enantioseparation and stacking of cyanobenz[f]isoindole-amino acids by reverse polarity capillary electrophoresis and sulfated β-cyclodextrin,” Analytical Chemistry, vol. 79, no. 2, pp. 736–743, 2007.
[14]  G. S. Yang, D. M. Chen, Y. Yang et al., “Enantioseparation of some clinically used drugs by capillary electrophoresis using sulfated β-cyclodextrin as a chiral selector,” Chromatographia, vol. 62, no. 7-8, pp. 441–445, 2005.
[15]  W. H. Henley, R. T. Wilburn, A. M. Crouch, and J. W. Jorgenson, “Flow counterbalanced capillary electrophoresis using packed capillary columns: resolution of enantiomers and isotopomers,” Analytical Chemistry, vol. 77, no. 21, pp. 7024–7031, 2005.
[16]  D. Wistuba, J. Kang, and V. Schurig, “Chiral separation by capillary electrochromatography using cyclodextrin phases,” Methods in Molecular Biology, vol. 243, pp. 401–409, 2004.
[17]  V. Pino, A. W. Lantz, J. L. Anderson, A. Berthod, and D. W. Armstrong, “Theory and use of the pseudophase model in gas-liquid chromatographic enantiomeric separations,” Analytical Chemistry, vol. 78, no. 1, pp. 113–119, 2006.
[18]  Q. Zhong, L. He, T. E. Beesley et al., “Development of dinitrophenylated cyclodextrin derivatives for enhanced enantiomeric separations by high-performance liquid chromatography,” Journal of Chromatography A, vol. 1115, no. 1-2, pp. 19–45, 2006.
[19]  M. Singh, R. Sharma, and U. C. Banerjee, “Biotechnological applications of cyclodextrins,” Biotechnology Advances, vol. 20, no. 5-6, pp. 341–359, 2002.
[20]  Q. Qi and W. Zimmermann, “Cyclodextrin glucanotransferase: from gene to applications,” Applied Microbiology and Biotechnology, vol. 66, no. 5, pp. 475–485, 2005.
[21]  N. A. F. Al-Rawashdeh, K. S. Al-Sadeh, and M. B. Al-Bitar, “Physicochemical study on microencapsulation of hydroxypropyl-β-cyclodextrin in dermal preparations,” Drug Development and Industrial Pharmacy, vol. 36, no. 6, pp. 688–697, 2010.
[22]  M. Motwani and J. Zatz, “Applications of cyclodextrins in skin products,” Cosmetics & Toiletries, vol. 112, pp. 39–47, 1997.
[23]  E. Kurul and S. Hekimoglu, “Skin permeation of two different benzophenone derivatives from various vehicles,” International Journal of Cosmetic Science, vol. 23, no. 4, pp. 211–218, 2001.
[24]  S. Scalia, A. Casolari, A. Iaconinoto, and S. Simeoni, “Comparative studies of the influence of cyclodextrins on the stability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate,” Journal of Pharmaceutical and Biomedical Analysis, vol. 30, no. 4, pp. 1181–1189, 2002.
[25]  K. B. Lipkowit, “Applications of computational chemistry to the Study of Cyclodextrins,” Chemical Reviews, vol. 98, pp. 1829–1874, 1998.
[26]  E. A. Castro and D. A. J. Barbiric, “Molecular modeling and cyclodextrins: a relationship strengthened by complexes,” Current Organic Chemistry, vol. 10, no. 7, pp. 715–729, 2006.
[27]  D. Thompson and J. A. Larsson, “Modeling competitive guest binding to β-cyclodextrin molecular printboards,” Journal of Physical Chemistry B, vol. 110, no. 33, pp. 16640–16645, 2006.
[28]  K. Harata, “The structure of the cyclodextrin complexes. XIII. Crystal structure of b cyclodextrin-1, 4-diazabicyclo[1. 2.2] octane complex tridecahydrate,” Bulletin of the Chemical Society of Japan, vol. 55, pp. 2315–2320, 1982.
[29]  S. Pattanaargson, T. Munhapol, P. Hirunsupachot, and P. Luangthongaram, “Photoisomerization of octyl methoxycinnamate,” Journal of Photochemistry and Photobiology A, vol. 161, no. 2-3, pp. 269–274, 2004.
[30]  S. Pattanaargson and P. Limphong, “Stability of octyl methoxycinnamate and identification of its photo-degradation product,” International Journal of Cosmetic Science, vol. 23, no. 3, pp. 153–160, 2001.
[31]  F. Trotta, M. Zanetti, and G. Camino, “Thermal degradation of cyclodextrins,” Polymer Degradation and Stability, vol. 69, no. 3, pp. 373–379, 2000.
[32]  F. Giordano, C. Novak, and J. R. Moyano, “Thermal analysis of cyclodextrins and their inclusion compounds,” Thermochimica Acta, vol. 380, no. 2, pp. 123–151, 2001.
[33]  S. Kohata, K. Jyodoi, and A. Ohyoshi, “Thermal decomposition of cyclodextrins (α-, β-, γ-, and modified β-CyD) and of metal-(β-CyD) complexes in the solid phase,” Thermochimica Acta, vol. 217, pp. 187–198, 1993.
[34]  M. K. Ghorab and M. C. Adeyeye, “Elucidation of solution state complexation in wet-granulated oven-dried ibuprofen and β-cyclodextrin: FT-IR and 1H-NMR studies,” Pharmaceutical Development and Technology, vol. 6, no. 3, pp. 315–324, 2001.
[35]  T. Loftsson and M. Masson, “Cyclodextrins in topical drug formulations: theory and practice,” International Journal of Pharmaceutics, vol. 225, no. 1-2, pp. 15–30, 2001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133