全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Photoluminescence Spectroscopic Study of BaMgAl10O17:Eu Phosphor Coated with CaF2 via a Sol-Gel Process

DOI: 10.1155/2013/312519

Full-Text   Cite this paper   Add to My Lib

Abstract:

CaF2 coatings on the surface of BaMgAl10O17:Eu (BAM) were prepared by a sol-gel process, and the optical properties and antithermal degradation properties were analyzed by photoluminescence spectra recorded under 254?nm and 147?nm excitation. The results indicate that BAM particles were successfully coated with CaF2 and CaF2 coatings show an interesting property to enhance the blue emission intensity of BAM. The optimum antithermal degradation properties were obtained at the weight ratio 0.4?wt% under 254?nm excitation and 0.3?wt% under 147?nm excitation, respectively. 1. Introduction BaMgAl10O17:Eu (BAM) is widely used in plasma display panels (PDPs) and lamps, due to its high luminescence efficiency and good chromaticity [1] and also used in other displays and lighting devices, for example, white light-emitting diodes (WLED). However, luminance degradation of BAM, consisting of thermal degradation and lifetime degradation, restrains the application of BAM, especially in PDPs. In lamps, the degradation of BAM is mainly caused by thermal treatment during lamp manufacturing. In WLED, similar thermal degradation is also observed in BAM and Eu2+ activated nitride-based phosphors [2]. Thermal degradation occurs when the phosphors are heated to about 500–700°C in ambient atmosphere during the manufacturing of PDP and lamps, while in WLED thermal degradation is caused by the heat released by the operating devices. It is generally considered that the luminescent center Eu2+ is oxidized to Eu3+ [1–3]. However, some other potential mechanisms were proposed recently which are related with O2? incorporated into the crystal lattice of BAM [4–6]. Lifetime degradation is caused by VUV radiation and ion sputtering during PDP operation, which can be explained by the formation of an amorphous surface layer [3]. One of the options to enhance thermal stability and ion resistance in BAM is the application of a closed particle coating [7]. Up to now, several inorganic materials have been reported to be selected as the coating materials such as SiO2 [8, 9], SrO, MgO [7, 10], Al2O3 [8, 11], AlPO4, and LaPO4 [12] and so forth. However, most of them possess strong band gap absorption in the range of 140 to 200?nm, which would thereby cause the reduction of the phosphor efficiency. Thus the option is narrowed to metal fluorides which have a wide transparency range in VUV region and high secondary electron emission coefficient which can improve the pixel brightness [7, 13]. Metal fluorides can be deposited onto the phosphor surface by conventional precipitation or

References

[1]  K. Yokota, S. X. Zhang, K. Kimura, and A. Sakamoto, “Eu2+-activated barium magnesium aluminate phosphor for plasma displays—phase relation and mechanism of thermal degradation,” Journal of Luminescence, vol. 92, no. 3, pp. 223–227, 2001.
[2]  C. W. Yeh, W. T. Chen, R. S. Liu, et al., “Origin of thermal degradation of Sr2–xSi5N8:Eux phosphors in air for light-emitting diodes,” Journal of the American Chemical Society, vol. 134, pp. 14108–14117, 2012.
[3]  K. B. Kim, K. W. Koo, T. Y. Cho, and H. G. Chun, “Effect of heat treatment on photoluminescence behavior of BaMgAl10O17:Eu phosphors,” Materials Chemistry and Physics, vol. 80, no. 3, pp. 682–689, 2003.
[4]  K. S. Sohn, S. S. Kim, and H. D. Park, “Luminescence quenching in thermally-treated barium magnesium aluminate phosphor,” Applied Physics Letters, vol. 81, no. 10, pp. 1759–1761, 2002.
[5]  Y. H. Wang and Z. H. Zhang, “Luminescence thermal degradation mechanism in BaMgAl10O17:Eu2+ phosphor,” Electrochemical and Solid-State Letters, vol. 8, no. 11, pp. H97–H99, 2005.
[6]  P. Boolchand, K. C. Mishra, M. Raukas, A. Ellens, and P. C. Schmidt, “Occupancy and site distribution of europium in barium magnesium aluminate by 151Eu M?ssbauer spectroscopy,” Physical Review B, vol. 66, no. 13, Article ID 134429, 2002.
[7]  T. Jüstel and H. Nikol, “Optimization of luminescent materials for plasma display panels,” Advanced Materials, vol. 12, no. 7, pp. 527–520, 2000.
[8]  Y. R. Do, D. H. Park, and Y. S. Kim, “Phosphor for a plasma display device coated with a continuous thin protective layer and method of manufacture,” U. S. Patent: 20020039665, 2002.
[9]  I. Y. Jung, Y. Cho, S. G. Lee et al., “Optical properties of the BaMgAl10O17: Eu2+ phosphor coated with SiO2 for a plasma display panel,” Applied Physics Letters, vol. 87, no. 19, Article ID 191908, 3 pages, 2005.
[10]  F. Yoshimura and N. Sudou, “Phosphor, its manufacturing method and plasma display panel,” Us patent, 6099753, 2000.
[11]  Y. R. Do, D. H. Park, and Y. S. Kim, “Al2O3 nanoencapsulation of BaMgAl10O17:Eu2+ phosphors for improved aging properties in plasma display panels,” Journal of the Electrochemical Society, vol. 151, no. 10, pp. H210–H212, 2004.
[12]  T. Jüstel, C. Rhonda, and W. Volker, “Plasma picture screen with coated phosphor,” U. S. Patent: 6602617, 2003.
[13]  S. B. Song, P. Y. Park, H. Y. Lee, J. H. Seo, and K. D. Kang, “Stability of weak discharge at Y-reset period in plasma display panel discharge,” Surface and Coatings Technology, vol. 171, no. 1–3, pp. 140–143, 2003.
[14]  H. Moriyama, T. Moriyama, and T. Kanda, “Kanda. Oxidation-resistant phosphor and production method therefore,” JP. Patent: 2001200249, 2001.
[15]  H. Yang, X. Wang, G. Duan et al., “Luminescent properties of BaMgAl10O17:Eu2+ phosphors modified with MgF2,” Materials Letters, vol. 58, no. 19, pp. 2374–2376, 2004.
[16]  C. N. Chau, “Phosphor with modified surface composition and method for preparation,” U. S. Patent: 5695685, 1997.
[17]  C. C. Lin, K. L. Tsai, and L. Ozawa, “Phosphor particle with antireflection coating,” U. S. Patent: 5792509, 1998.
[18]  F. Li and Y. H. Wang, “Preparation and characterization of BaMgAl10O17:Eu phosphor coated with MgF2 by sol-gel process,” Transactions of Nonferrous Metals Society of China, vol. 15, no. 2, pp. 328–331, 2005.
[19]  M. Tada, S. Fujihara, and T. Kimura, “Sol-gel processing and characterization of alkaline earth and rare-earth fluoride thin films,” Journal of Materials Research, vol. 14, no. 4, pp. 1610–1616, 1999.
[20]  V. I. Nefedov, Y. A. Buslaev, and Y. V. Kokunov, “X-ray electron study of internal levels of fluorides,” Zhurnal Neorganicheskoi Khimii, vol. 18, p. 931, 1973.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413