全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Use of Fourier Transform Infrared Spectroscopy for Quantification of Adulteration in Virgin Walnut Oil

DOI: 10.1155/2013/305604

Full-Text   Cite this paper   Add to My Lib

Abstract:

Currently, the authentication of virgin walnut oil (VWO) has become very important due to the possible adulteration of VWO with cheaper plant oils such as soybean oil (SO), puer tea seed oil (PO), and sunflower oil (SFO). Methods involving Fourier transform infrared (FT-IR) spectroscopy combined with chemometric techniques (partial least square) were developed for quantification of SO, PO, and SFO in VWO. IR spectra of oil samples were recorded at frequency regions of 4000–650?cm?1 on horizontal attenuated total reflectance (HATR) attachment of FT-IR. PLS model correlates the actual and FT-IR estimated values of oil adulterants (SO, PO, and SFO) with coefficients of determination ( ) of 0.9958, 0.9925, and 0.9952, respectively. The obtained RMSEC values of SO, PO, and SFO in VWO are 1.35%, 1.85%, and 1.43% (v/v), respectively. The method, therefore, has potential as a rapid method for quantification of product adulteration. 1. Introduction In the recent years, walnut oil has received great attention because of its biological activities and sensory qualities and has become a very important agricultural product for many countries. The unsaturated fatty acid in walnut oil is 90%. There is about 47.4% of linoleic acid and 15.8% of linolenic acid [1]. Epidemiological studies show that walnut oil not only reduces serum cholesterol but at the same time has nutritional cranial nerve cells which can adjust plant nerve function. Other experts discovered that walnut oil does not only act as officinal, but also can be used as the “old man and the infant nutrition oil” as well as aerial work and flight personnel’s senior health care oil [2]. Due to its higher price in the market, WO can be a target of adulteration with the cheaper oils such as soybean oil in order to gain economical profit. Therefore, the development of rapid and nonexpensive analytical techniques capable of detecting such adulterations in walnut oil is currently highly demanded. In fact, the adulteration is a serious problem in trade of fats and oils for a long time, and it is of primary importance for consumers, food processors, and industries, because there is a great difference in quality and price for different oil products. The adulteration is increasingly more difficult to detect when the oil adulterant has similar chemical composition to the authentic oil [3, 4]. In addition, chemical methods traditionally employed for the control of authenticity of virgin edible oil as gas chromatography and high performance liquid chromatography are expensive, time-consuming, require skilled operators, and

References

[1]  B. Y. Wan, H. Z. Dong, and H. Li, “Research on the properties and nutrition of walnut oil,” China Western Cereals & Oils Technology, vol. 26, pp. 18–19, 2001.
[2]  S. L. Zhao, C. Y. Chen, and F. Ge, “Progressive study on functions and components,” Journal of Yunnan University of Traditional Chinese Medicine, vol. 33, pp. 71–74, 2010.
[3]  J. B. Rossell, B. King, and M. J. Downes, “Detection of adulteration,” Journal of the American Oil Chemists' Society, vol. 60, pp. 333–339, 1983.
[4]  A. K. Shukla, A. K. Dixit, and R. P. Singh, “Detection of adulteration in edible oils,” Journal of Oleo Science, vol. 6, pp. 317–324, 2005.
[5]  R. Aparicio and R. Aparicio-Ruíz, “Authentication of vegetable oils by chromatographic techniques,” Journal of Chromatography A, vol. 881, no. 1-2, pp. 93–104, 2000.
[6]  W. Kamm, F. Dionisi, C. Hischenhuber, and K. H. Engel, “Authenticity assessment of fats and oils,” Food Reviews International, vol. 17, no. 3, pp. 249–290, 2001.
[7]  M. D. Guillen and N. Cabo, “Some of the most significant changes in the Fourier transform infrared spectra of edible oils under oxidative conditions,” Journal of the Science of Food and Agriculture, vol. 80, pp. 2028–2036, 2000.
[8]  D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to Spectroscopy, Thomson Learning, Victoria, Australia, 3rd edition, 2001.
[9]  L. M. Reid, C. P. O’Donnell, and G. Downey, “Recent technological advances for the determination of food authenticity,” Trends in Food Science & Technology, vol. 17, pp. 344–353, 2006.
[10]  A. A. Christy, P. K. Egeberg, and E. T. ?stensen, “Simultaneous quantitative determination of isolated trans fatty acids and conjugated linoleic acids in oils and fats by chemometric analysis of the infrared profiles,” Vibrational Spectroscopy, vol. 33, no. 1-2, pp. 37–48, 2003.
[11]  L. E. Rodriguez-Saona and M. E. Allendorf, “Use of FTIR for rapid authentication and detection of adulteration of food,” Annual Review of Food Science and Technology, vol. 2, no. 17, pp. 1–17, 2011.
[12]  J. Moros, S. Garrigues, and M. de la Guardia, “Vibrational spectroscopy provides a green tool for multi-component analysis,” Trends in Analytical Chemistry, vol. 29, no. 7, pp. 578–591, 2010.
[13]  I. S. Arvanitoyannis and A. Vlachos, “Implementation of physicochemical and sensory analysis in conjunction with multivariate analysis towards assessing olive oil authentication/adulteration,” Critical Reviews in Food Science and Nutrition, vol. 47, no. 5, pp. 441–498, 2007.
[14]  P. Geladi and B. R. Kowalski, “Partial least-squares regression: a tutorial,” Analytica Chimica Acta, vol. 185, pp. 1–17, 1986.
[15]  H. Martens and T. N?s, Multivariate Calibration, Wiley, Chichester, UK, 1989.
[16]  A. Al-Alawi, F. R. Van de Voort, and J. Sedman, “New FTIR method for the determination of FFA in oils,” Journal of the American Oil Chemists' Society, vol. 81, no. 5, pp. 441–446, 2004.
[17]  A. Bendini, L. Cerretani, F. Di Virgilio, P. Belloni, M. Bonoli-Carbognin, and G. Lercker, “Preliminary evaluation of the application of the ftir spectroscopy to control the geographic origin and quality of virgin olive oils,” Journal of Food Quality, vol. 30, no. 4, pp. 424–437, 2007.
[18]  E. Bertran, M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, and I. Montoliu, “Determination of olive oil free fatty acid by Fourier transform infrared spectroscopy,” Journal of the American Oil Chemists' Society, vol. 76, no. 5, pp. 611–616, 1999.
[19]  F. A. I?ón, J. M. Garrigues, S. Garrigues, A. Molina-Díaz, and M. de la Guardia, “Selection of calibration set samples in determination of olive oil acidity by partial least squares-attenuated total reflectance-Fourier transform infrared spectroscopy,” Analytica Chimica Acta, vol. 489, no. 1, pp. 59–75, 2003.
[20]  H. Li, F. R. Van De Voort, A. A. Ismail, and R. Cox, “Determination of peroxide value by Fourier transform near-infrared spectroscopy,” Journal of the American Oil Chemists' Society, vol. 77, no. 2, pp. 137–142, 2000.
[21]  H. Li, F. R. Van De Voort, A. A. Ismail et al., “Discrimination of edible oil products and quantitative determination of their iodine value by Fourier transform near-infrared spectroscopy,” Journal of the American Oil Chemists' Society, vol. 77, no. 1, pp. 29–36, 2000.
[22]  A. A. Christy, S. Kasemsumran, Y. Du, and Y. Ozaki, “The detection and quantification of adulteration in olive oil by near-infrared spectroscopy and chemometrics,” Analytical Sciences, vol. 20, no. 6, pp. 935–940, 2004.
[23]  K. Y. L. Yap, S. Y. Chan, and C. S. Lim, “Infrared-based protocol for the identification and categorisation of ginseng and its products,” Food Research International, vol. 40, pp. 643–652, 2007.
[24]  M. D. Guillén and N. Cabo, “Characterization of edible oils and lard by fourier transform infrared spectroscopy: relationships between composition and frequency of concrete bands in the fingerprint region,” Journal of the American Oil Chemists' Society, vol. 74, no. 10, pp. 1281–1286, 1997.
[25]  M. J. Lerma-García, G. Ramis-Ramos, J. M. Herrero-Martínez, and E. F. Simó-Alfonso, “Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy,” Food Chemistry, vol. 118, no. 1, pp. 78–83, 2010.
[26]  M. M. Paradkar and J. Irudayaraj, “A rapid FTIR spectroscopic method for estimation of caffeine in soft drinks and total methylxanthines in tea and coffee,” Journal of Food Science, vol. 67, no. 7, pp. 2507–2511, 2002.
[27]  G. Gurdeniz, F. Tokatli, and B. Ozen, “Differentiation of mixtures of monovarietal olive oils by mid-infrared spectroscopy and chemometrics,” European Journal of Lipid Science and Technology, vol. 109, no. 12, pp. 1194–1202, 2007.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133