全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Feasibility of an Isometric Maximal Voluntary Contraction Test in Hematological Cancer Patients during Thrombocytopenia

DOI: 10.1155/2013/470489

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction. Resistance training is rarely offered to hemato-oncological patients in the daily clinical routine due to its potential harmful impact on the cardiovascular system and the long periods of thrombocytopenia experienced by these patients. Therefore, it is important to determine a valid assessment to define and control resistance training. In this study, the feasibility of a maximal voluntary contraction (MVC) test was investigated in hemato-oncological patients. This inexpensive assessment may be a practicable alternative to the one repetition maximum test which is currently described as the gold standard. Methods. 29 hemato-oncological patients with platelet counts between 30000/μL and 70000/μL were recruited for this pilot study. Complications like petechial bleedings, muscle convulsion, and pain were assessed using the Brief Pain Inventory before and 48 hours after the MVC test, which was performed unidirectionally for the quadriceps muscle. Results. We did not detect any statistically significant test-related exacerbations or pain development. Discussion. MVC testing seems to be a feasible method to control a resistance training program in hemato-oncological patients. Further studies need to extend their methods and, for example, compare the MVC test with the one repetition maximum test. 1. Introduction Hemato-oncological patients who underwent chemotherapy often show a severe reduction in muscle mass. This reduction may be caused by immobilization, the influence of chemotherapeutic agents, and/or the impact of immunosuppressive therapy consisting of glucocorticoids and cyclosporine and counteracting the graft-versus-host-disease [1–9]. The decrease of muscle mass leads to a loss of physical performance and is involved in certain cancer and therapy associated phenomena like cancer-related fatigue and cachexia [10, 11]. Especially patients suffering from cachexia have a poor prognosis and a reduced tolerance regarding intensive treatment protocols including radiation and chemotherapeutic agents [12]. The positive influence of different types of exercise, for example, endurance and resistance training, on physical and psychological outcomes in cancer patients has been proven in several studies [13–15]. Yet evidence-based guidelines regarding resistance training frequencies and intensities are still missing. Possibly more valid and practicable assessment methods would help to generate specific recommendations. Although leukemia and lymphoma patients have a comparably long hospitalization phase and therefore experience long periods of

References

[1]  B. A. Cunningham, G. Morris, and C. L. Cheney, “Effects of resistive exercise on skeletal muscle in marrow transplant recipients receiving total parenteral nutrition,” Journal of Parenteral and Enteral Nutrition, vol. 10, no. 6, pp. 558–563, 1986.
[2]  R. C. Hickson and J. R. Marone, “Exercise and inhibition of glucocorticoid-induced muscle atrophy,” Exercise and Sport Sciences Reviews, vol. 21, pp. 135–167, 1993.
[3]  T. K. LaPier, “Glucocorticoid-induced muscle atrophy: the role of exercise in treatment and prevention,” Journal of Cardiopulmonary Rehabilitation, vol. 17, no. 2, pp. 76–84, 1997.
[4]  K. S. Courneya, M. R. Keats, and A. R. Turner, “Physical exercise and the quality of life in cancer patients following high dose chemotherapy and autologous bone marrow transplantation,” Psycho-Oncology, vol. 9, no. 2, pp. 127–136, 2000.
[5]  M. Mello, C. Tanaka, and F. L. Dulley, “Effects of an exercise program on muscle performance in patients undergoing allogeneic bone marrow transplantation,” Bone Marrow Transplantation, vol. 32, no. 7, pp. 723–728, 2003.
[6]  A. F. San Juan, C. Chamorro-Vina, S. Moral et al., “Benefits of intrahospital exercise training after pediatric bone marrow transplantation,” International Journal of Sports Medicine, vol. 29, no. 5, pp. 439–446, 2008.
[7]  O. Schakman, H. Gilson, and J. P. Thissen, “Mechanisms of glucocorticoid-induced myopathy,” Journal of Endocrinology, vol. 197, no. 1, pp. 1–10, 2008.
[8]  M. Breil and P. Chariot, “Muscle injury associated with cyclosporine treatment,” Muscle & Nerve, vol. 22, pp. 1631–1636, 1999.
[9]  F. T. Baumann, L. Kraut, K. Schüle, W. Bloch, and A. A. Fauser, “A controlled randomized study examining the effects of exercise therapy on patients undergoing haematopoietic stem cell transplantation,” Bone Marrow Transplantation, vol. 45, no. 2, pp. 355–362, 2010.
[10]  T. Elter, M. Stipanov, E. Heuser et al., “Is physical exercise possible in patients with critical cytopenia undergoing intensive chemotherapy for acute leukaemia or aggressive lymphoma?” International Journal of Hematology, vol. 90, no. 2, pp. 199–204, 2009.
[11]  J. Greenleaf and S. Kozlowsky, “Physiological consequences of reduced physical activity during bed rest,” in Exercise and Sports Science Review, R. Terjung, Ed., Franklin Institute Press, Philadelphia, Pa, USA, 1982.
[12]  W. D. Dewys, C. Begg, P. T. Lavin et al., “Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group,” American Journal of Medicine, vol. 69, pp. 491–497, 1980.
[13]  L. Adamsen, M. Quist, C. Andersen et al., “Effect of a multimodal high intensity exercise intervention in cancer patients undergoing chemotherapy: randomised controlled trial,” British Medical Journal, vol. 339, p. b3410, 2009.
[14]  I. C. de Backer, E. van Breda, A. Vreugdenhil, M. R. Nijziel, A. D. Kester, and G. Schep, “High-intensity strength training improves quality of life in cancer survivors,” Acta Oncologica, vol. 46, no. 8, pp. 1143–1151, 2007.
[15]  M. Quist, M. Rorth, M. Zacho et al., “High-intensity resistance and cardiovascular training improve physical capacity in cancer patients undergoing chemotherapy,” Scandinavian Journal of Medicine and Science in Sports, vol. 16, pp. 349–357, 2006.
[16]  I. C. de Backer, G. Vreugdenhil, M. R. Nijziel, A. D. Kester, E. van Breda, and G. Schep, “Long-term follow-up after cancer rehabilitation using high-intensity resistance training: persistent improvement of physical performance and quality of life,” British Journal of Cancer, vol. 99, no. 1, pp. 30–36, 2008.
[17]  F. Dimeo, S. Fetscher, W. Lange, R. Mertelsmann, and J. Keul, “Effects of aerobic exercise on the physical performance and incidence of treatment-related complications after high-dose chemotherapy,” Blood, vol. 90, no. 9, pp. 3390–3394, 1997.
[18]  V. A. Cornelissen and R. H. Fagard, “Effect of resistance training on resting blood a pressure: a meta-analysis of randomized controlled trials,” Journal of Hypertension, vol. 23, no. 2, pp. 251–259, 2005.
[19]  S. Vadhan-Raj, “Management of chemotherapy-induced thrombocytopenia: current status of thrombopoietic agents,” Seminars in Hematology, vol. 46, no. 2, pp. S26–S32, 2009.
[20]  K. A. Volaklis and S. P. Tokmakidis, “Resistance exercise training in patients with heart failure,” Sports Medicine, vol. 35, no. 12, pp. 1085–1103, 2005.
[21]  K. H. Schmitz, K. S. Courneya, C. Matthews et al., “American college of sports medicine roundtable on exercise guidelines for cancer survivors,” Medicine and Science in Sports and Exercise, vol. 42, no. 7, pp. 1409–1426, 2010.
[22]  I. F. Koblbauer, Y. Lambrecht, M. L. van der Hulst et al., “Reliability of maximal isometric knee strength testing with modified hand-held dynamometry in patients awaiting total knee arthroplasty: useful in research and individual patient settings? A reliability study,” BMC Musculoskelet Disord, vol. 31, no. 12, article 249, 2011.
[23]  K. E. Personius, S. Pandya, W. M. King, R. Tawil, and M. P. McDermott, “Facioscapulohumeral dystrophy natural history study: standardization of testing procedures and reliability of measurements,” Physical Therapy, vol. 74, no. 3, pp. 253–263, 1994.
[24]  D. J. Harriss and G. Atkinson, “Update—ethical standards in sport and exercise science research,” International Journal of Sports Medicine, vol. 32, no. 11, pp. 819–821, 2011.
[25]  H. Rogge, “Sport in oncological patients,” Physiotherapie, vol. 80, pp. 540–542, 1989.
[26]  L. Radbruch, G. Loick, P. Kiencke et al., “Validation of the German version of the brief pain inventory,” Journal of Pain and Symptom Management, vol. 18, no. 3, pp. 180–187, 1999.
[27]  F. T. Baumann, E. M. Zopf, E. Nykamp et al., “Physical activity for patients undergoing an allogeneic hematopoietic stem cell transplantation: benefits of a moderate exercise intervention,” European Journal of Haematology, vol. 87, no. 2, pp. 148–156, 2011.
[28]  C. R. Callow, R. Swindell, W. Randall, and R. Chopra, “The frequency of bleeding complications in patients with haematological malignancy following the introduction of a stringent prophylactic platelet transfusion policy,” British Journal of Haematology, vol. 118, no. 2, pp. 677–682, 2002.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133