全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Thermodynamic Equilibrium Analysis of Methanol Conversion to Hydrocarbons Using Cantera Methodology

DOI: 10.1155/2012/125460

Full-Text   Cite this paper   Add to My Lib

Abstract:

Reactions associated with removal of oxygen from oxygenates (deoxygenation) are an important aspect of hydrocarbon fuels production process from biorenewable substrates. Here we report the equilibrium composition of methanol-to-hydrocarbon system by minimizing the total Gibbs energy of the system using Cantera methodology. The system was treated as a mixture of 14 components which had CH3OH, C6H6, C7H8, C8H10 (ethyl benzene), C8H10 (xylenes), C2H4, C2H6, C3H6, CH4, H2O, C, CO2, CO, H2. The carbon in the equilibrium mixture was used as a measure of coke formation which causes deactivation of catalysts that are used in aromatization reaction(s). Equilibrium compositions of each species were analyzed for temperatures ranging from 300 to 1380?K and pressure at 0–15 atm gauge. It was observed that when the temperature increases the mole fractions of benzene, toluene, ethylbenzene, and xylene pass through a maximum around 1020?K. At 300?K the most abundant species in the system were CH4, CO2, and H2O with mole fractions 50%, 16.67%, and 33.33%, respectively. Similarly at high temperature (1380?K), the most abundant species in the system were H2 and CO with mole fractions 64.5% and 32.6% respectively. The pressure in the system shows a significant impact on the composition of species. 1. Introduction Methanol is the simplest alcohol which has a tremendous importance as an industrial feedstock [1, 2]. As a fuel, methanol does not have high enough specific heat value to compete with gasoline and therefore its not attractive as a substitute but as a motor fuel additive it is said to be improving the fuel quality. The prospect of methanol being used as raw material for fuel processing actually started with the accidental discovery by Chang and Silvestry in the early 70s [3]. With the use of newly discovered ZSM-5 it was found that methanol can be transformed to gasoline grade products. Methanol conversion process in the industry has branched into two paths, namely, methanol to olefins (MTO) and methanol to gasoline (MTG). Even though MTG got the global attention as an alternative route to produce fuel, it was unable to make the process economically viable [4, 5]. To make the process economical the process parameters has to be optimized. Catalyst upgrading to make deoxygenation reaction more selective toward gasoline products such as benzene, toluene, ethylbenzene, and xylene (BTEX) is one such approach [6, 7]. Another approach is to alter the reaction conditions such as temperature, pressure, and residence time to augment the desired product spectrum [6, 8]. For

References

[1]  X. Yin, D. Y. C. Leung, J. Chang, J. Wang, Y. Fu, and C. Wu, “Characteristics of the synthesis of methanol using biomass-derived syngas,” Energy & Fuels, vol. 19, no. 1, pp. 305–310, 2005.
[2]  P. Reubroycharoen, T. Yamagami, T. Vitidsant, Y. Yoneyama, M. Ito, and N. Tsubaki, “Continuous low-temperature methanol synthesis from syngas using alcohol promoters,” Energy & Fuels, vol. 17, no. 4, pp. 817–821, 2003.
[3]  C. D. Chang and A. J. Silvestri, “The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts,” Journal of Catalysis, vol. 47, no. 2, pp. 249–259, 1977.
[4]  M. W. Anderson and J. Klinowski, “Solid state NMR studies of the shape-selective catalytic conversion of Methanol into gasoline on Zeolite ZSM-5,” Journal of the American Chemical Society, vol. 112, no. 1, pp. 10–16, 1990.
[5]  B. C. Gates, Catalytic Chemistry, The Wiley Series in Chemical Engineering, Wiley, 1991.
[6]  R. Barthos, T. Bánsági, T. Süli Zakar, and F. Solymosi, “Aromatization of methanol and methylation of benzene over Mo2C/ZSM-5 catalyst,” Journal of Catalysis, vol. 247, no. 2, pp. 368–378, 2007.
[7]  D. Freeman, R. P. K. Wells, and G. J. Hutchings, “Conversion of methanol to hydrocarbons over Ga2O3/H-ZSM-5 and Ga2O3/WO3 catalysts,” Journal of Catalysis, vol. 205, no. 2, pp. 358–365, 2002.
[8]  ?. Mikkelsen and S. Kolboe, “The conversion of methanol to hydrocarbons over zeolite H-beta,” Microporous and Mesoporous Materials, vol. 29, no. 1-2, pp. 173–184, 1999.
[9]  D. M. McCann, D. Lesthaeghe, P. W. Kletnieks et al., “A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment,” Angewandte Chemie, vol. 47, no. 28, pp. 5179–5182, 2008.
[10]  S. R. Blaszkowski and R. A. Van Santen, “Theoretical study of C-C bond formation in the methanol-to- gasoline process,” Journal of the American Chemical Society, vol. 119, no. 21, pp. 5020–5027, 1997.
[11]  J. E. Jackson and F. M. Bertsch, “Conversion of methanol to gasoline: a new mechanism for formation of the first carbon-carbon bond,” Journal of the American Chemical Society, vol. 112, no. 25, pp. 9085–9092, 1990.
[12]  S. M. Campbell, X. Z. Jiang, and R. F. Howe, “Methanol to hydrocarbons: spectroscopic studies and the significance of extra-framework aluminium,” Microporous and Mesoporous Materials, vol. 29, no. 1-2, pp. 91–108, 1999.
[13]  U. Olsbye, M. Bj?rgen, S. Svelle, K. P. Lillerud, and S. Kolboe, “Mechanistic insight into the methanol-to-hydrocarbons reaction,” Catalysis Today, vol. 106, no. 1–4, pp. 108–111, 2005.
[14]  I. M. Dahl and S. Kolboe, “On the reaction mechanism for propene formation in the MTO reaction over SAPO-34,” Catalysis Letters, vol. 20, no. 3-4, pp. 329–336, 1993.
[15]  D. A. Gunawardena and S. D. Fernando, “Deoxygenation of methanol over ZSM-5 in a high pressure catalytic pyroprobe,” Chemical Engineering and Technology, vol. 34, no. 2, pp. 173–178, 2011.
[16]  D. Goodwin, “Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes,” http://code.google.com/p/cantera/.
[17]  M. Baratieri, P. Baggio, L. Fiori, and M. Grigiante, “Biomass as an energy source: thermodynamic constraints on the performance of the conversion process,” Bioresource Technology, vol. 99, no. 15, pp. 7063–7073, 2008.
[18]  A. Burcat and B. Ruscic, “Third millenium ideal gas and condensed phase thermochemical database for combustion with update from active thermochemical tables,” Tech. Rep., Argonne National Laboratory, 2005.
[19]  A. Burcat and B. Ruscic, New NASA Thermodynamic Polynomials Database With Active Thermochemical Tables updates, ANL 05/20 TAE 960, 2010, ftp://ftp.technion.ac.il/pub/supported/aetdd/thermodynamics.
[20]  A. F. Kazakov, NIST/TRC Web Thermo Tables (WTT)—Professional Edition, Thermodynamics Research Center, 2010.
[21]  S.I. Sandler, Chemical, Biochemical, and Engineering Thermodynamics, John Wiley & Sons, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413