全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Modified Lennard-Jones Potentials with a Reduced Temperature-Correction Parameter for Calculating Thermodynamic and Transport Properties: Noble Gases and Their Mixtures (He, Ne, Ar, Kr, and Xe)

DOI: 10.1155/2013/828620

Full-Text   Cite this paper   Add to My Lib

Abstract:

The three-parameter Lennard-Jones potential function is proposed to calculate thermodynamic property (second virial coefficient) and transport properties (viscosity, thermal conductivity, and diffusion coefficient) of noble gases (He, Ne, Ar, Kr, and Xe) and their mixtures at low density. Empirical modification is made by introducing a reduced temperature-correction parameter to the Lennard-Jones potential function for this purpose. Potential parameters ( , , and ) are determined individually for each species when the second virial coefficient and viscosity data are fitted together within the experimental uncertainties. Calculated thermodynamic and transport properties are compared with experimental data by using a single set of parameters. The present study yields parameter sets that have more physical significance than those of second virial coefficient methods and is more discriminative than the existing transport property methods in most cases of pure gases and of gas mixtures. In particular, the proposed model is proved with better results than those of the two-parameter Lennard-Jones potential, Kihara Potential with group contribution concepts, and other existing methods. 1. Introduction Accurate representation of thermodynamic and transport properties is essential to process engineers to design and optimize equipment and chemical processes. Second virial coefficient is an important quantity which is useful in calculating vessel size from volumetric data, heating requirements from calorimetric data, and stage requirements from phase equilibrium data. Transport properties such as viscosity, thermal conductivity, and diffusion coefficient are critically important parameters in many engineering applications: for the determination of pipeline, heatexchanger and separation equipment size, mass transfer efficiency of reservoir of oils, and the power required to pump fluid [1]. The intermolecular forces are of great importance to scientists in a wide field of disciplines as information of these interactions provides the progress of collisions between molecules and determines the bulk properties of substances. Approximation of thermodynamic and transport properties from statistical mechanics requires a realistic intermolecular potential [2]. The theoretical basis in statistical mechanics for the virial equation is one of its attractions. The viral equation truncated after the second term is a popular tool to calculate accurate thermodynamic properties at low or moderate densities. A number of investigators have emphasized the determination of second

References

[1]  T. H. Chung, M. Ajlan, L. L. Lee, and K. E. Starling, “Generalized multiparameter correlation for nonpolar and polar fluid transport properties,” Industrial & Engineering Chemistry Research, vol. 27, no. 4, pp. 671–679, 1988.
[2]  J. P. O'Connell and J. M. Prausnitz, “Advances in thermophysical properties at extreme temperatures and pressures,” in Proceedings of the 3rd Symposium of Thermophysical Properties, ASME, New York, NY, USA, 1965.
[3]  S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, New York, NY, USA, 3rd edition, 1970.
[4]  J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, NY, USA, 1954.
[5]  J. H. Dymond and B. J. Alder, “Pair potential for Argon,” The Journal of Chemical Physics, vol. 51, no. 50, pp. 309–320, 1969.
[6]  L. S. Tee, S. Gotoh, and W. E. Stewart, “Molecular parameters for normal fluids. Lennard-Jones 12-6 Potential,” Industrial and Engineering Chemistry Fundamentals, vol. 5, no. 3, pp. 356–363, 1966.
[7]  L. S. Tee, S. Gotoh, and W. E. Stewart, “molecular parameters for normal fluids. kihara potential with spherical core,” Industrial and Engineering Chemistry Fundamentals, vol. 5, no. 3, pp. 363–367, 1966.
[8]  J. E. Lennard-Jones, “On the determination of molecular fields. II. from the equation of state of a gas,” Proceedings of the Royal Society A, vol. 106, no. 738, pp. 463–477, 1924.
[9]  T. Kojima, A Study on measurement for speed of sound in R125, R143a, and the mixture and precise determination of thermodynamic properties base on intermolecular potential model [M.S. thesis], Keio University, Yokohama, Japan, 2001.
[10]  K. Ichikura, Y. Kano, and H. Sato, “Importance of third virial coefficients for representing the gaseous phase based on measuring PVT-properties of 1,1,1-Trifluoroethane (R143a),” International Journal of Thermophysics, vol. 27, pp. 23–38, 2006.
[11]  B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and Liquids, McGraw Hill, New York, NY, USA, 5th edition, 2004.
[12]  P. D. Neufeld, A. R. Janzen, and R. A. Aziz, “Empirical equations to calculate 16 of the transport collision integrals * for the lennard-jones (12-6) potential,” The Journal of Chemical Physics, vol. 57, no. 3, pp. 1100–1102, 1972.
[13]  R. Brokaw, “Predicting transport properties of dilute gases,” Industrial & Engineering Chemistry Process Design and Development, vol. 8, no. 2, pp. 240–253, 1969.
[14]  H. J. M. Hanley and M. Klein, “Application of the m-6-8 potential to simple gases,” The Journal of Physical Chemistry, vol. 76, no. 12, pp. 1743–1751, 1972.
[15]  A. Wassiljewa, “W?rmeleitung in Gasgemischen,” Physikalische Zeitschrift, vol. 5, p. 737, 1904.
[16]  E. A. Mason and S. C. Saxena, “Approximate formula for the thermal conductivity of gas mixtures,” Physics of Fluids, vol. 1, no. 5, pp. 361–369, 1958.
[17]  J. H. Dymond, K. N. Marsh, R. C. Wilhoit, and K. C. Wong, Virial Coefficients of Pure Gases and Mixtures, vol. 4 of Landolt-B?rnstein: Numerical Data and Functional Relationships in Science and Technology, part 21A&B, Springer, Hidelberg, Germany, 2002.
[18]  K. Stephan and K. Lucas, Viscosity of Dense Fluids, Plenum Press, New York, NY, USA, 1979.
[19]  IMSL, IMSL STAT/LIBRARY: Regression, IMSL, Houston, Tex, USA, 1994.
[20]  S.-K. Oh, “An extension of the group contribution method for estimating thermodynamic and transport properties. Part III. Noble gases,” Korean Journal of Chemical Engineering, vol. 22, no. 6, pp. 949–959, 2005.
[21]  C. Tsonopoulos, “Empirical correlation of second virial coefficients,” AIChE Journal, vol. 20, no. 2, pp. 263–272, 1974.
[22]  E. W. Lemmon, M. L. Huber, and M. O. McLinden, “NIST standard reference database 23,” Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0, National Institute of Standards and Technology, 2010.
[23]  K. Lucas, Phase Equilibria and Fluid Properties in the Chemical Industry, Dechema, Frankfurt, Germany, 1980.
[24]  Simsci Database, Pro/II with Provision Software, http://iom.invensys.com/EN/Pages/SimSci-Esscor_ProcessEngSuite_PROII.aspx.
[25]  E. N. Fuller, P. D. Schettler, and J. C. Giddings, “new method for prediction of binary gas-phase diffusion coefficients,” Industrial & Engineering Chemistry Research, vol. 58, no. 5, pp. 18–27, 1966.
[26]  J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M. Waldman, “equilibrium and transport properties of the noble gases and their mixtures at low density,” Journal of Physical and Chemical Reference Data, vol. 13, no. 1, 75 pages, 1984.
[27]  A. Arteconi, G. Di Nicola, G. Santori, and R. Stryjek, “Second virial coefficients for dimethyl ether,” Journal of Chemical & Engineering Data, vol. 54, no. 6, pp. 1840–1843, 2009.
[28]  A. A. Richcardo and M. N. da Ponte, “Second virial coefficients of mixtures of Xenon and lower hydrocarbons. 1. Experimental apparatus and results for Xe + C2H6,” The Journal of Physical Chemistry, vol. 100, no. 48, pp. 18839–18843, 1996.
[29]  D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, New York, NY, USA, 90th edition, 2010.
[30]  J. Kestin and J. Yata, “Viscosity and diffusion coefficient of six binary mixtures,” The Journal of Chemical Physics, vol. 49, no. 11, pp. 4780–4791, 1968.
[31]  A. S. Kalelkar and J. Kestin, “Viscosity of He-Ar and He-Kr binary gaseous mixtures in the temperature range 25–720°C,” The Journal of Chemical Physics, vol. 52, no. 8, pp. 4248–4261, 1970.
[32]  J. Kestin, E. Payko?, and J. V. Sengers, “On the density expansion for viscosity in gases,” Physica, vol. 54, no. 1, pp. 1–19, 1971.
[33]  J. Kestin, S. T. Ro, and Ber. Bunsenges, “The viscosity of nine binary and two ternary mixtures of gases at low density,” Berichte der Bunsengesellschaft für Physikalische Chemie, vol. 20, no. 1, pp. 20–24, 1974.
[34]  J. Kestin, S. T. Ro, and W. A. Wakeham, “Viscosity of the binary gaseous mixture Helium-nitrogen,” The Journal of Chemical Physics, vol. 56, no. 8, pp. 4032–4036, 1972.
[35]  J. Kestin, S. T. Ro, and W. A. Wakeham, “Viscosity of the noble gases in the temperature range 25–700°C,” Journal of Chemical Physics, vol. 56, no. 8, 6 pages, 1972.
[36]  J. Kestin, S. T. Ro, and W. A. Wakeham, “Viscosity of the binary gaseous mixtures He–Ne and Ne–N2 in the Temperature Range 25–700°C,” Journal of Chemical Physics, vol. 56, no. 12, 6 pages, 1972.
[37]  J. Kestin, H. E. Kalifa, S. T. Ro, and W. A. Wakeham, “The viscosity and diffusion coefficients of eighteen binary gaseous systems,” Physica A, vol. 88, no. 2, pp. 242–260, 1977.
[38]  J. Kestin, H. E. Khalifa, and W. A. Wakeham, “The viscosity and diffusion coefficients of the binary mixtures of Xenon with the other noble gases,” Physica A, vol. 90, no. 2, pp. 215–228, 1978.
[39]  J. Kestin and W. A. Wakeham, “The viscosity and diffusion coefficient of binary mixtures of nitrous oxide with He, Ne and CO,” Berichte der Bunsengesellschaft für Physikalische Chemie, vol. 87, no. 4, pp. 309–311, 1983.
[40]  M. Trauntz and K. F. Kipphan, “Die Reibung, W?rmeleitung und diffusion in gasmischungen. IV. Die reibung bin?rer und tern?rer edelgasgemische,” Annalen der Physik, vol. 394, no. 6, p. 743, 1929.
[41]  M. Trauntz and R. Zink, “Die Reibung, W?rmeleitung und diffusion in gasmischungen XII. Gasreibung bei h?heren temperaturen,” Annalen der Physik, vol. 399, no. 4, p. 427, 1930.
[42]  M. Trauntz and H. Zimmermann, “Die Reibung, W?rmeleitung und diffusion von gasmischungen XXX. Die innere reibung bei tiefen temperaturen von wasserstoff, helium und neon und bin?ren gemischen davon bis 90,0° abs. herab,” Annalen der Physik, vol. 414, no. 2, p. 189, 1935.
[43]  J. Kestin and W. Leidenfrost, “The viscosity of Helium,” Physica, vol. 25, no. 1–6, pp. 537–555, 1959.
[44]  K. Kestin and W. Leidenfrost, Thermal and Transport Properties of Gases and Liquids, McGraw-Hill, New York, NY, USA, 1959.
[45]  E. Thornton, “Viscosity and thermal conductivity of binary gas mixtures: Xenon-Krypton, Xenon-Argon, Xenon-Neon and Xenon-Helium,” Proceedings of the Physical Society, vol. 76, no. 1, p. 104, 1960.
[46]  E. Thornton, “Viscosity and thermal conductivity of binary gas mixtures: Krypton-Argon, Krypton-Neon, and Krypton-Helium,” Proceedings of the Physical Society, vol. 77, no. 6, p. 1166, 1961.
[47]  E. Thornton and W. A. D. Baker, “Viscosity and thermal conductivity of binary gas mixtures: Argon-Neon, Argon-Helium, and Neon-Helium,” Proceedings of the Physical Society, vol. 80, no. 5, p. 1171, 1962.
[48]  H. Iwasaki and J. Kestin, “The viscosity of Argon-Helium mixtures,” Physica, vol. 29, no. 12, pp. 1345–1372, 1963.
[49]  A. B. Rakshit and C. S. Roy, “Viscosity and polar-nonpolar interactions in mixtures of inert gases with ammonia,” Physica, vol. 78, no. 1, pp. 153–164, 1974.
[50]  A. O. Rietveld, A. Van Itterbeek, and G. J. Van Den Berg, “Measurements on the viscosity of mixtures of Helium and Argon,” Physica, vol. 19, no. 1-12, pp. 517–524, 1953.
[51]  A. O. Rietveld, A. Van Itterbeek, and C. A. Velds, “Viscosity of binary mixtures of hydrogen isotopes and mixtures of He and Ne,” Physica, vol. 25, no. 1–6, pp. 205–216, 1959.
[52]  A. E. Schuil, “A note on the viscosity of gases and molecular mean free path,” Philosophical Magazine Series 7, vol. 28, no. 191, p. 679, 1939.
[53]  J. Kestin and A. Nagashima, “Viscosity of Neon-Helium and Neon-Argon mixtures at 20° and 30°C,” The Journal of Chemical Physics, vol. 40, no. 12, pp. 3648–3654, 1964.
[54]  J. Kestin, Y. Kobayashi, and R. T. Wood, “The viscosity of four binary, gaseous mixtures at 20° and 30°C,” Physica, vol. 32, no. 6, pp. 1065–1089, 1966.
[55]  H. Landolt and R. B?rnstein, Landolt-B?rnstein Physikalischchemische Tabellen, Springer, Berlin, Germany, 1923.
[56]  N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases, Hemisphere, Washington, DC, USA, 2nd edition, 1975.
[57]  K. Stephan and T. Heckenberger, Thermal Conductivity and Viscosity Data of Fluid Mixtures, vol. 10 of Chemistry Data Series, Dechema, Frankfurt, Germany, 1988.
[58]  E. Bich, J. Millat, and E. Vogel, “The viscosity and thermal conductivity of pure monatomic gases from their normal boiling point up to 5000?K in the limit of zero density and at 0.101325?MPa,” Journal of Physical and Chemical Reference Data, vol. 19, no. 6, article 1289, 17 pages, 1990.
[59]  W. A. Wakeham, A. Nagashima, and J. V. Sengers, Measurement of the Transport Properties of Fluids, IUPAC Chemical Data Series no. 37, Blackwell Scientific, London, UK, 1991.
[60]  A. Bejan and A. D. Kraus, Heat Transfer Handbook, chapter 2, John Wiley & Sons, New York, NY, USA, 2003.
[61]  G. C. Maitland and E. B. Smith, “Critical reassessment of viscosities of 11 common gases,” Journal of Chemical & Engineering Data, vol. 17, no. 2, pp. 150–156, 1972.
[62]  G. F. C. Rogers and Y. R. Mayhew, Thermodynamic and Transport Properties of Fluids, Basil Blackwell, Oxford, UK, 3rd edition, 1981.
[63]  IAEA, Thermophysical Properties of Materials for Nuuclear Engineering: A Tutorial and Collection of Data, IAEA, Vienna, 2008.
[64]  J. Kestin, W. Wakeham, and K. Watanabe, “Viscosity, thermal conductivity, and diffusion coefficient of Ar-Ne and Ar-Kr gaseous mixtures in the temperature range 25–700°C,” The Journal of Chemical Physics, vol. 53, no. 10, pp. 3773–3780, 1970.
[65]  J. Kestin, S. T. Ro, and W. A. Wakeham, “Viscosity of the binary gaseous mixture Neon–Krypton,” Journal of Chemical Physics, vol. 56, no. 8, article 4086, 6 pages, 1972.
[66]  A. O. Rankine, “On the variation with temperature of the viscosities of the gases of the Argon group,” Zeitschrift für Physik, vol. 11, p. 497, pp. 745–762, 1910.
[67]  A. G. Clarke and E. B. Smith, “Low-temperature viscosities of argon, krypton, and xenon,” The Journal of Chemical Physics, vol. 48, no. 9, pp. 3988–3991, 1968.
[68]  R. A. Dawe and E. B. Smith, “Viscosities of the inert gases at high temperatures,” The Journal of Chemical Physics, vol. 52, no. 2, pp. 693–703, 1970.
[69]  R. S. Edwards, “The effect of temperature on the viscosity of Neon,” Proceedings of the Royal Society A, vol. 119, no. 783, pp. 578–590, 1928.
[70]  A. van Itterbeek and O. van Paemel, “Viscosity of liquid deuterium,” Physica, vol. 7, no. 3, p. 208, 1940.
[71]  R. Wobser and F. Müller, “Die innere reibung von gasen und d?mpfen und ihre messung im H?ppler-viskosimeter,” Kolloid-Beihefte, vol. 52, no. 6-7, pp. 165–276, 1941.
[72]  H. Johnston and E. R. Grilly, “Viscosities of carbon monoxide, Helium, Neon, and Argon between 80° and 300°K. coefficients of viscosity,” The Journal of Physical Chemistry, vol. 46, no. 8, pp. 948–963, 1942.
[73]  J. Kestin and W. Leidenfrost, “An absolute determination of the viscosity of eleven gases over a range of pressures,” Physica, vol. 25, no. 7-12, pp. 1033–1062, 1959.
[74]  G. P. Flynn, R. V. Hanks, N. A. Lemaire, and J. F. Ross, “Viscosity of Nitrogen, Helium, Neon, and Argon from ?78.5° to 100°C below 200 Atmospheres,” Journal of Chemical Physics, vol. 38, no. 1, article 154, 9 pages, 1963.
[75]  J. Kestin and J. H. Whitelaw, “A relative determination of the viscosity of several gases by the oscillating disk method,” Physica, vol. 29, no. 4, pp. 335–356, 1963.
[76]  N. J. Trappeniers, A. Botzen, H. R. Van Den Berg, and J. Van Oosten, “The viscosity of Neon between 25°C and 75°C at pressures up to 1800 atmospheres. Corresponding states for the viscosity of the noble gases up to high densities,” Physica, vol. 30, no. 5, pp. 985–996, 1964.
[77]  A. O. Rietveld and A. van Itterbeek, “Measurements on the viscosity of Ne-A mixtures between 300 and 70°K,” Physica, vol. 22, no. 6-12, pp. 785–790, 1956.
[78]  M. Trautz and H. E. Binkele, “Die Reibung, W?rmeleitung und diffusion in gasmischungen. VIII. die reibung des H2, He, Ne, Ar und ihrer bin?ren gemische,” Annalen der Physik, vol. 397, no. 5, pp. 561–580, 1930.
[79]  B. A. Younglove and H. J. M. Hanley, “The viscosity and thermal conductivity coefficients of gaseous and liquid Argon,” Journal of Physical and Chemical Reference Data, vol. 5, no. 4, article 1323, 15 pages, 1986.
[80]  I. A. Barr, G. P. Matthews, E. B. Smith, and A. R. Tindell, “Intermolecular forces and the gaseous viscosities of Argon-Xenon mixtures,” Journal of Physical Chemistry, vol. 85, no. 22, pp. 3342–3347, 1981.
[81]  J. M. Hellemans, J. Kestin, and S. T. Ro, “Viscosity of the binary gaseous mixtures of nitrogen with Argon and Krypton,” The Journal of Chemical Physics, vol. 57, no. 9, pp. 4038–4042, 1972.
[82]  J. Kestin and S. T. Ro, “The viscosity and diffusion coefficients of binary mixtures of nitrous Oxide with Ar, N2, and CO2,” Berichte der Bunsengesellschaft für Physikalische Chemie, vol. 86, no. 10, pp. 948–950, 1982.
[83]  J. Kestin and W. A. Wakaham, “The viscosity of three polar gases,” Berichte der Bunsengesellschaft für Physikalische Chemie, vol. 83, no. 6, pp. 573–576, 1979.
[84]  A. van Itterbeek and O. van Paemel, “Measurements on the viscosity of Argon gas at room temperature and between 9° and 55°K,” Physica, vol. 5, no. 10, pp. 1009–1012, 1938.
[85]  P. Gray and A. O. S. Maczek, “The thermal conductivities, viscositites, and diffusion coefficients of mixtures, containing two polar gases,” in Proceedings of the 4th Symposium on Thermophysical Properties, pp. 380–391, ASME, New York, NY, USA, 1968.
[86]  C. F. Bonilla, S. J. Wang, and H. Weiner, “The viscosity of steam, heavy-water vapor, and Argon at atmospheric pressure up to high temperatures,” Transactions of the American Society of Mechanical Engineers, vol. 78, pp. 1285–1289.
[87]  H. Iwasaki, J. Kestin, and A. Nagashima, “Viscosity of Argon-ammonia mixtures,” The Journal of Chemical Physics, vol. 40, no. 10, pp. 2988–2995, 1964.
[88]  J. Hilsenrath, Tables of Thermal Properties of Gases, vol. 564 of National Bureau of Standards Circular, US Government Printing Office, Washington, DC, USA, 1955.
[89]  J. M. Hellemans, J. Kestin, and S. T. Ro, “The viscosity of oxygen and of some of its mixtures with other gases,” Physica, vol. 65, no. 2, pp. 362–375, 1973.
[90]  E. F. May, R. F. Berg, and M. R. Moldover, “Reference viscosities of H2, CH4, Ar, and Xe at low densities,” International Journal of Thermophysics, vol. 28, no. 4, pp. 1085–1110, 2007.
[91]  V. Vasilesco, “Recherches expérimentales sur la viscosité des gaz aux températures élevées,” Annales de Physique, vol. 20, pp. 292–334, 1945.
[92]  H. J. M. Hanley, “the viscosity and thermal conductivity coefficients of dilute Argon, Krypton, and Xenon,” Journal of Physical and Chemical Reference Data, vol. 3, no. 3, article 619, 24 pages, 1973.
[93]  H. J. M. Hanley, R. D. McCarty, and W. M. Haynes J, “The viscosity and thermal conductivity coefficients for dense gaseous and liquid Argon, Krypton, Xenon, Nitrogen, and Oxygen,” Journal of Physical and Chemical Reference Data, vol. 3, no. 4, article 979, 39 pages, 1974.
[94]  X. Wang, J. Wu, and Z. Liu, “Viscosity of gaseous HFC245fa,” Journal of Chemical & Engineering Data, vol. 55, no. 1, pp. 496–499, 2010.
[95]  R. Kiyama and T. Makita, “The viscosity of carbon dioxide, ammonia, acetylene, Argon and oxygen under high pressures,” Review of Physical Chemistry of Japan, vol. 22, pp. 49–58, 1952.
[96]  T. Makita, “The viscosity at pressures to 80o kg/cm2 up of Argon, nitrogen and air,” Review of Physical Chemistry of Japan, vol. 27, no. 1, pp. 16–21, 1957.
[97]  M. Hongo, “Viscosity of Argon and of Argon-ammonia mixtures under pressures,” The Review of Physical Chemistry of Japan, vol. 48, no. 2, pp. 63–71, 1979.
[98]  J. Kestin, H. E. Khalifa, and W. A. Wakeham, “The viscosity of gaseous mixtures containing Krypton,” The Journal of Chemical Physics, vol. 67, no. 9, pp. 4254–4259, 1977.
[99]  M. Trautz, “Die reibung, W?rmeleitung und diffusion in Gasmischungen XXI. Absoluter η-Wirkungsquerschnitt, molekulartheoretische bedeutung der kritischen temperatur und berechung kritischer drucke aus η,” Annalen Der Physik, vol. 407, no. 2, p. 198, 1932.
[100]  J. M. Gandhi and S. C. Saxena, “Thermal conductivity of binary and ternary mixtures of Helium, Neon and Xenon,” Molecular Physics, vol. 12, no. 1, p. 57, 1967.
[101]  S. C. Saxena, M. P. Saksena, R. S. Gambhir, and J. M. Gandhi, “The thermal conductivity of nonpolar polyatomic gas mixtures,” Physica, vol. 31, no. 3, pp. 333–341, 1965.
[102]  H. Ziebland, “commission on physicochemical measurements and standards,” Pure & Applied Chemistry, vol. 53, no. 10, pp. 1863–1877, 1981.
[103]  R. W. Powell, C. Y. Ho, and P. E. Liley, “Thermal conductivity of seleted materials,” National Standard Reference Data Series NBS 8, US Department of Commerce, 1966.
[104]  S. C. Saxena, “Transport properties of gases and gaseous mixtures at high temperatures,” High Temperature Science, vol. 3, pp. 168–188, 1971.
[105]  S. C. Saxena, S. Mathur, and G. P. Gupta, “The thermal conductivity data of some binary gas mixtures involving nonpolar polyatomic gases,” Defence Science Journal, vol. 16, supplement, pp. 99–112, 1966.
[106]  N. B. Vargaftik, L. P. Filippon, A. A. Tarzimanov, and E. E. Totskii, Handbook of Thermal Conductivity of Liquids and Gaseous, CRC Press, Boca Raton, Fla, USA, 1994.
[107]  W. Van Dael and H. Cauwenbergh, “Measurements of the thermal conductivity of gases. II. Data for binary mixtures of He, Ne and Ar,” Physica, vol. 40, no. 2, pp. 173–181, 1968.
[108]  W. G. Kannuluik and E. H. Carman, “The thermal conductivity of rare gases,” Proceedings of the Physical Society B, vol. 65, no. 9, p. 701, 1952.
[109]  R. S. Gambhir and S. C. Saxena, “Thermal conductivity of binary and ternary mixtures of Krypton, Argon and Helium,” Molecular Physics, vol. 11, no. 3, pp. 233–241, 1966.
[110]  E. A. Mason and H. Von Ubisch, “Thermal conductivities of rare gas mixtures,” Physics of Fluids, vol. 3, no. 3, pp. 355–361, 1960.
[111]  S. C. Saxena, “Thermal conductivity of binary and ternary mixtures of helium, argon and xenon,” Indian Journal of Physics, vol. 31, pp. 597–606, 1957.
[112]  H. von Ubisch, “The thermal conductivities of mixtures of rare gases at 29° and 520°,” Arkiv f?r Fysik, vol. 16, pp. 93–100, 1959.
[113]  S. Mathur, P. K. Tondon, and S. C. Saxena, “Thermal conductivity of binary, ternary and quaternary mixtures of rare gases,” Molecular Physics, vol. 12, no. 6, pp. 569–579, 1967.
[114]  C. Y. Ho, R. W. Powell, and P. E. Liley J, “Thermal conductivity of the elements,” Journal of Physical and Chemical Reference Data, vol. 1, no. 2, article 279, 143 pages, 1972.
[115]  B. N. Srivastava and S. C. Saxena, “Thermal conductivity of binary and ternary rare gas mixtures,” Proceedings of the Physical Society B, vol. 70, no. 4, p. 369, 1957.
[116]  K. Sch?fer, “Transport Phenomena in the temperature range up to 1100 degrees,” Dechema Monograph, vol. 32, pp. 61–73, 1959.
[117]  K. C. Hansen, L. H. Tsao, T. M. Aminabhavi, and C. L. Yaws, “Gaseous thermal conductivity of hydrogen chloride, hydrogen bromide, boron trichloride, and boron trifluoride in the temperature range from 55 to 380°C,” Journal of Chemical and Engineering Data, vol. 40, no. 1, pp. 18–20, 1995.
[118]  R. S. Gambhir and S. C. Saxena, “Thermal conductivity of the gas mixtures: Ar-D2, Kr-D2 and Ar-Kr-D2,” Physica, vol. 32, no. 11-12, pp. 2037–2043, 1966.
[119]  L. Sun and J. E. S. Venart, “Thermal conductivity, thermal diffusivity, and heat capacity of gaseous Argon and nitrogen,” International Journal of Thermophysics, vol. 26, no. 2, pp. 325–372, 2005.
[120]  L. Sun, J. E. S. Venart, and R. C. Prasad, “The thermal conductivity, thermal diffusivity, and heat capacity of gaseous Argon,” International Journal of Thermophysics, vol. 23, pp. 357–389, 2002.
[121]  C. J. Zwakhals and K. W. Reus, “Corrections to the Smoluchowski equation in the presence of hydrodynamic interactions,” Physica C, vol. 100, no. 2, pp. 251–265, 1980.
[122]  W. Groth and E. Su?ner, “Selbstdiffusionsmessungen III. Der selbstdiffusionskoeffizient des neon (self-diffusion measurments III. The coefficient of self diffusion of neon),” Zeitschrift für Physikalische Chemie, vol. 193, pp. 296–300, 1944.
[123]  W. Groth and P. Harteck, “Die selbstdiffusion des Xenons und des Kryptons,” Zeitschrift für Elektrochemie, vol. 47, no. 2, pp. 167–172, 1941.
[124]  M. P. Saksena and S. C. Saxena, “Viscosity of multicomponent gas mixtures,” Physica A, vol. 31, p. 18, 1965.
[125]  H. Iwasaki and J. Kestin, “The viscosity of Argon-Helium mixtures,” Physica, vol. 29, no. 12, pp. 1345–1372, 1963.
[126]  D. J. Richardson, G. Mason, B. A. Buffham, K. Hellgardt, I. W. Cumming, and P. A. Russell, “Viscosity of binary mixtures of carbon monoxide and Helium,” Journal of Chemical and Engineering Data, vol. 53, no. 1, pp. 303–306, 2008.
[127]  S. C. Saxena and T. K. S. Narayanan, “Multicomponent viscosities of gaseous mixtures at high temperatures,” Industrial & Engineering Chemistry Fundamentals, vol. 1, no. 3, pp. 191–195, 1962.
[128]  J. W. Buddenberg and C. R. Wilke, “Calculation of gas mixture viscosities,” Industrial & Engineering Chemistry Research, vol. 41, no. 7, pp. 1345–1347, 1949.
[129]  J. Wachsmuth, “über die w?rmeleitung von gemischen zwischen argon und helium,” Physikalische Zeitschrift, vol. 7, p. 235, 1908.
[130]  E. A. Mason and T. R. Marrero, “Gaseous diffusion coefficients,” Journal of Physical and Chemical Reference Data, vol. 1, no. 1, 116 pages, 1972.
[131]  R. J. J. Van Heijningen, J. P. Harpe, and J. J. M. Beenakker, “Determination of the diffusion coefficients of binary mixtures of the noble gases as a function of temperature and concentration,” Physica, vol. 38, no. 1, pp. 1–34, 1968.
[132]  P. S. Arora, H. L. Robjohns, and P. J. Dunlop, “Use of accurate diffusion and second virial coefficients to determine (m, 6, 8) potential parameters for nine binary noble gas systems,” Physica A, vol. 95, no. 3, pp. 561–571, 1979.
[133]  M. Trautz and W. Muller, “Die reibung, w?rmeleitung und diffusion in gasmischungen III. Die korrektion der bisher mit der verdampfungsmethode gemessenen diffusionskonstanten,” Annalen der Physik, vol. 414, no. 4, pp. 333–352, 1935.
[134]  J. N. Holsen and M. R. Strunk, “Binary diffusion coefficients in nonpolar gases,” Industrial and Engineering Chemistry Fundamentals, vol. 3, no. 2, pp. 143–146, 1964.
[135]  S. L. Seager, L. R. Geertson, and J. C. Giddings, “Temperature dependence of gas and vapor diffusion coefficients,” Journal of Chemical & Engineering Data, vol. 8, no. 2, pp. 168–169, 1963.
[136]  A. T. Hu and R. Kobayashi, “Measurements of gaseous diffusion coefficients for dilute and moderately dense gases by perturbation chromatography,” Journal of Chemical & Engineering Data, vol. 15, no. 2, pp. 326–335, 1970.
[137]  A. P. Malinauskas, “Gaseous diffusion. The systems He–Ar, Ar–Xe, and He–Xe,” Journal of Chemical Physics, vol. 42, no. 1, article 157, 4 pages, 1965.
[138]  R. A. Strehlow, “The temperature dependence of the mutual diffusion coefficient for four gaseous systems,” Journal of Chemical & Engineering Data, vol. 21, no. 12, article 2101, 6 pages, 1953.
[139]  R. E. Walker and A. A. Westenberg , “Molecular diffusion studies in gases at high temperature. III. results and interpretation of the He—a system,” Journal of Chemical Physics, vol. 31, no. 519, 4 pages, 1959.
[140]  J. C. Giddings and S. L. Seager, “Method for the rapid determination of diffusion coefficients. theory and application,” Industrial and Engineering Chemistry Fundamentals, vol. 1, no. 4, pp. 277–283, 1962.
[141]  S. C. Sexena and E. A. Mason, “Thermal diffusion and the approach to the steady state in gases: II,” Molecular Physics, vol. 2, no. 4, p. 379, 1959.
[142]  E. N. Fuller, P. D. Schettler, and J. C. Giddings, “New method for prediction of binary gas-phase diffusion coefficients,” Industrial & Engineering Chemistry, vol. 58, no. 5, pp. 18–27, 1966.
[143]  M. Keil, L. Danielson, and P. J. Dunlop, “On obtaining interatomic potentials from multiproperty fits to experimental data,” Journal of Chemical Physics, vol. 84, no. 14, article 296, 14 pages, 1991.
[144]  A. P. Malinauskas, “Gaseous Diffusion. The Systems He–Ar, Ar–Xe, and He–Xe,” Journal of Chemical Physics, vol. 42, no. 1, article 156, 4 pages, 1964.
[145]  K. Schafer and K. Schuhman Z, “Zwischenmolekulare kr?fte und temperaturabh?ngigkeit von diffusion und selbstdiffusion in Edelgasen,” Zeitschrift für Elektrochemie, vol. 61, no. 2, pp. 246–252, 1957.
[146]  B. N. Srivastava and K. P. Srivastava, “Mutual diffusion of pairs of rare gases at different temperatures,” Journal of Chemical Physics, vol. 30, no. 984, article 984, 7 pages, 1959.
[147]  W. Sutherland, “The viscosity of gases and molecular force,” Philosophical Magazine, vol. 36, pp. 507–631, 1893.
[148]  W. Sutherland, “The attraction of unlike molecules.-I. The diffusion of gases,” Philosophical Magazine, vol. 38, no. 230, pp. 1–19, 1894.
[149]  V. P. S. Main and S. C. Saxena, “measurement of the concentration diffusion coefficient for Ne-Ar, Ne-Xe, Ne-H2, Xe-H2, H2-N2 and H2-O2 gas systems,” Applied Scientific Research, vol. 23, pp. 121–133, 1971.
[150]  A. E. Humphreys and E. A. Mason, “Intermolecular forces: thermal diffusion and diffusion in Ar–Kr,” Physics of Fluids, vol. 13, no. 1, article 65, 6 pages, 1970.
[151]  P. J. Dunlop and C. M. Bignell, “Diffusion and thermal diffusion in binary mixtures of methane with noble gases and of Argon with Krypton,” Physica A, vol. 145, no. 3, pp. 584–596, 1987.
[152]  L. Andrussow and T. F. Schatzki, “Diffusion coefficients of the systems Xe–Xe and A–Xe,” Journal of Chemical Physics, vol. 27, no. 5, article 1049, 6 pages, 1957.
[153]  E. A. Mason and T. R. Marrero, “The diffusion of atoms and molecules,” Advances in Atomic and Molecular Physics, vol. 6, pp. 155–232, 1970.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133