全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Metabolic Effects of Sucralose on Environmental Bacteria

DOI: 10.1155/2013/372986

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sucralose was developed as a low cost artificial sweetener that is nonmetabolizable in humans. Sucralose can withstand changes in pH and temperature and is not degraded by the wastewater treatment process. Since the molecule can withstand heat, acidification, and microbial degradation, it is accumulating in the environment and has been found in wastewater, estuaries, rivers, and the Gulf Stream. Environmental isolates were cultured in the presence of sucralose looking for potential sucralose metabolism or growth acceleration responses. Sucralose was found to be nonnutritive and demonstrated bacteriostatic effects on all six isolates. This growth inhibition was directly proportional to the concentration of sucralose exposure, and the amount of the growth inhibition appeared to be species-specific. The bacteriostatic effect may be due to a decrease in sucrose uptake by bacteria exposed to sucralose. We have determined that sucralose inhibits invertase and sucrose permease. These enzymes cannot catalyze hydrolysis or be effective in transmembrane transport of the sugar substitute. Current environmental concentrations should not have much of an effect on environmental bacteria since the bacteriostatic effect seems to be consecration based; however, as sucralose accumulates in the environment, we must consider it a contaminant, especially for microenvironments. 1. Introduction Sucralose was the first noncalorie sweetener made from natural sugar, being manufactured by the selective chlorination of sucrose, which substitutes three of the hydroxyl groups with chlorines [1]. Sucralose is stable under increased heat and over a broad range of acidic and alkaline conditions. Therefore, sucralose can be used in baking or in products that require a longer shelf-life [2]. Sucralose causes exactly zero caloric increase in mammals [1]. Artificial sweeteners have been considered contaminants by environmental scientists only recently [3]. Due to the human inability to metabolize these molecules, they are passed on to the environment via human excrement, and the highest concentration (2,800 ± 1,000?ng/L) of combined artificial sweetener contaminants is found in wastewater treatment reservoirs [4]. Artificial sweeteners such as saccharin and cyclamates are found mostly degraded by the wastewater treatment process. Sucralose, however, is found in higher concentrations and was degraded minimally [4]. Degradation only occurs to a limited extent during hydrolysis, ozonation, and microbial processes indicating that breakdown of sucralose will likely be slow and incomplete

References

[1]  I. Knight, “The development and applications of sucralose, a new high-intensity sweetener,” Canadian Journal of Physiology and Pharmacology, vol. 72, no. 4, pp. 435–439, 1994.
[2]  J. Ma, J. Chang, H. L. Checklin et al., “Effect of the artificial sweetener, sucralose, on small intestinal glucose absorption in healthy human subjects,” British Journal of Nutrition, vol. 104, no. 6, pp. 803–806, 2010.
[3]  M. Scheurer, F. R. Storck, C. Graf et al., “Correlation of six anthropogenic markers in wastewater, surface water, bank filtrate, and soil aquifer treatment,” Journal of Environmental Monitoring, vol. 13, no. 4, pp. 966–973, 2011.
[4]  C. I. Torres, S. Ramakrishna, C.-A. Chiu, K. G. Nelson, P. Westerhoff, and R. Krajmalnik-Brown, “Fate of sucralose during wastewater treatment,” Environmental Engineering Science, vol. 28, no. 5, pp. 325–331, 2011.
[5]  L. Soh, K. A. Connors, B. W. Brooks, and J. Zimmerman, “Fate of sucralose through environmental and water treatment processes and impact on plant indicator species,” Environmental Science and Technology, vol. 45, no. 4, pp. 1363–1369, 2011.
[6]  R. N. Mead, J. B. Morgan, G. B. Avery Jr. et al., “Occurrence of the artificial sweetener sucralose in coastal and marine waters of the United States,” Marine Chemistry, vol. 116, no. 1–4, pp. 13–17, 2009.
[7]  D. A. Young and W. H. Bowen, “The influence of sucralose on bacterial metabolism,” Journal of Dental Research, vol. 69, no. 8, pp. 1480–1484, 1990.
[8]  W. H. Bowen and S. K. Pearson, “The effects of sucralose, xylitol, and sorbitol on remineralization of caries lesions in rats,” Journal of Dental Research, vol. 71, no. 5, pp. 1166–1168, 1992.
[9]  I. H. Segel, Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems, 1993.
[10]  W. H. Bowen, D. A. Young, and S. K. Pearson, “The effects of sucralose on coronal and root-surface caries,” Journal of Dental Research, vol. 69, no. 8, pp. 1485–1487, 1990.
[11]  M. B. Abou-Donia, E. M. El-Masry, A. A. Abdel-Rahman, R. E. McLendon, and S. S. Schiffman, “Splenda alters gut microflora and increases intestinal P-glycoprotein and cytochrome P-450 in male rats,” Journal of Toxicology and Environmental Health A, vol. 71, no. 21, pp. 1415–1429, 2008.
[12]  A. Omran, R. Baker, and C. Coughlin, “Differential bacteriostatic effects of sucralose on various species of environmental bacteria,” ISRN Toxicology, vol. 2013, Article ID 415070, 6 pages, 2013.
[13]  M. P. Labare and M. Alexander, “Biodegradtion of sucralose, a chlorinated carbohydrate in samples of natural environments,” Environmental Toxicology and Chemistry, vol. 12, no. 5, pp. 797–804, 1993.
[14]  M. P. Labare and M. Alexander, “Microbial cometabolism of sucralose, a chlorinated disaccharide, in environmental samples,” Applied Microbiology and Biotechnology, vol. 42, no. 1, pp. 173–178, 1994.
[15]  E. Brorstrom-Lunden, A. Svensson, T. Viktor, et al., “Measurements of sucralose in the Swedish screening program 2007, part 1 and 2, sucralose in surface waters and STP samples,” Tech. Rep. IVL Report B1769, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413