全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cumulative Risk Assessment Toolbox: Methods and Approaches for the Practitioner

DOI: 10.1155/2013/310904

Full-Text   Cite this paper   Add to My Lib

Abstract:

The historical approach to assessing health risks of environmental chemicals has been to evaluate them one at a time. In fact, we are exposed every day to a wide variety of chemicals and are increasingly aware of potential health implications. Although considerable progress has been made in the science underlying risk assessments for real-world exposures, implementation has lagged because many practitioners are unaware of methods and tools available to support these analyses. To address this issue, the US Environmental Protection Agency developed a toolbox of cumulative risk resources for contaminated sites, as part of a resource document that was published in 2007. This paper highlights information for nearly 80 resources from the toolbox and provides selected updates, with practical notes for cumulative risk applications. Resources are organized according to the main elements of the assessment process: (1) planning, scoping, and problem formulation; (2) environmental fate and transport; (3) exposure analysis extending to human factors; (4) toxicity analysis; and (5) risk and uncertainty characterization, including presentation of results. In addition to providing online access, plans for the toolbox include addressing nonchemical stressors and applications beyond contaminated sites and further strengthening resource accessibility to support evolving analyses for cumulative risk and sustainable communities. 1. Introduction The public has become increasingly aware of the wide variety of chemicals present—not just in the environmental media to which they are exposed (such as air, water, and soil) but also in the food they eat and the products they use. As access to relevant information continues to grow, notably via the Internet, many communities have voiced concerns about health effects associated with the multiple chemicals in their daily lives. To address these concerns, many organizations have responded with approaches, guidelines, focused workshops, and illustrative applications to better assess cumulative risks. These organizations include the US Environmental Protection Agency (EPA), National Institute for Occupational Safety and Health (NIOSH), Agency for Toxic Substances and Disease Registry (ATSDR), World Health Organization (WHO), California Environmental Protection Agency (Cal/EPA), the Environmental Justice (EJ) community, and professional organizations such as the Society of Toxicology. Cumulative risk assessment (CRA) explicitly considers the combined fate and effects of multiple contaminants from multiple sources through multiple exposure

References

[1]  National Research Council, “Risk assessment in the Federal Government: managing the process,” Committee on the Institutional Means for Assessment of Risks to Public Health, Commission on Life Sciences, National Academy Press, Washington, DC, USA, 1983, http://www.nap.edu/openbook.php?isbn=0309033497.
[2]  US Environmental Protection Agency, “Framework for cumulative risk assessment,” EPA/630/P-02/001F, Risk Assessment Forum, Washington, DC, USA, 2003, http://www.epa.gov/raf/publications/framework-cra.htm, http://www.epa.gov/raf/publications/pdfs/frmwrk_cum_risk_assmnt.pdf.
[3]  Agency for Toxic Substances and Disease Registry, “Interaction profiles for toxic substances,” Atlanta, GA, USA, 2011, http://www.atsdr.cdc.gov/interactionprofiles/index.asp.
[4]  World Health Organization, “Risk assessment of combined exposure to multiple chemicals,” (Draft report) WHO/IPCS Framework, Geneva, Switzerland, 2009, http://www.who.int/ipcs/methods/harmonization/areas/aggregate/en/, http://www.who.int/ipcs/methods/harmonization/areas/combinedexposure.pdf.
[5]  M. E. Meek, A. R. Boobis, K. M. Crofton, G. Heinemeyer, M. Van Raaij, and C. Vickers, “Risk assessment of combined exposure to multiple chemicals: a WHO/IPCS framework,” Regulatory Toxicology and Pharmacology, vol. 60, no. 2, supplement 1, pp. S1–S14, 2011.
[6]  California Environmental Protection Agency, “Cumulative impacts: building a scientific foundation,” OEHHA, Sacramento, CA, USA, 2010, http://oehha.ca.gov/ej/pdf/CIReport123110.pdf.
[7]  National Research Council, “Phthalates and cumulative risk assessment: the tasks ahead,” Committee on the Health Risks of Phthalates, Board on Environmental Studies and Toxicology, Division on Earth and Life Sciences, The National Academies Press, Washington, DC, USA, 2008, http://books.nap.edu/catalog.php?record_id=12528.
[8]  National Research Council, “Science and decisions: advancing risk assessment,” Committee on Improving Risk Analysis Approaches Used by the U.S. EPA, Board on Environmental Studies and Toxicology, Division on Earth and Life Studies, The National Academies Press, Washington, DC, 2009,http://www.nap.edu/catalog.php?record_id=12209.
[9]  European Commission, “No Miracle (NOvel Methods for Integrated Risk Assessment of CumuLative stressors in Europe),” 2009, http://nomiracle.jrc.ec.europa.eu/default.aspx.
[10]  US Environmental Protection Agency, “Concepts, methods and data sources for cumulative health risk assessment of multiple chemicals, exposures and effects: a resource document,” Final Report, EPA/600/R-06/013F, Office of Research and Development, National Center for Environmental Assessment, Cincinnati, OH, USA, 2007, http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=190187.
[11]  National Institute for Occupational Safety and Health, “Mixed exposures research agenda—a report by the NORA mixed exposures team,” National Occupational Research Agenda (NORA), DHHS (NIOSH) no. 2005-106, 2004, http://www.cdc.gov/niosh/nora/, http://www.cdc.gov/niosh/nora/pastnorapubs.html.
[12]  US Environmental Protection Agency, “Risk assessment guidance for Superfund, vol. 1, human health evaluation manual (part A),” Interim Final (RAGS Part A), EPA/540/1-89/002, Office of Emergency and Remedial Response, Washington, DC, USA, 1989, http://www.epa.gov/oswer/riskassessment/ragsa/index.htm.
[13]  R. T. Kay, T. L. Arnold, W. F. Cannon, D. Graham, E. Morton, and R. Bienert, “Concentrations of polynuclear aromatic hydrocarbons and inorganic constituents in ambient surface soils, Chicago, Illinois: 2001-02,” US Geological Survey Water-Resources Investigations Report 03-4105, USGS, Urbana, IL, USA, Chicago Department of Environment, Chicago, IL, USA, 2003, http://il.water.usgs.gov/pubs/wrir03_4105.pdf.
[14]  Massachusetts Department of Environmental Protection, “Background levels of polycyclic aromatic hydrocarbons and metals in soil,” Technical Update, Office of Research & Standards, Boston, MA, USA, 2002, http://www.mass.gov/dep/cleanup/laws/backtu.pdf.
[15]  Texas Commission on Environmental Quality, “Texas risk reduction program (TRRP),” Austin, TX, USA, 2012, http://www.tceq.texas.gov/remediation/trrp/trrp.html.
[16]  P. C. Johnson and R. A. Ettinger, “Heuristic model for predicting the intrusion rate of contaminant vapors into buildings,” Environmental Science and Technology, vol. 25, no. 8, pp. 1445–1452, 1991.
[17]  US Environmental Protection Agency, “Integrated risk information system (IRIS),” Office of Research and Development, NCEA, Washington, DC, USA, 2012, http://www.epa.gov/iris.
[18]  US Environmental Protection Agency, “Provisional peer reviewed toxicity values for Superfund (PPRTV),” PPRTV Assessments Electronic Library, Office of Superfund Remediation and Technology Innovation, 2012, http://hhpprtv.ornl.gov/.
[19]  M. M. Mumtaz, K. A. Poirier, and J. T. Colman, “Risk assessment for chemical mixtures: fine-tuning the hazard index approach,” Journal of Clean Technology, Environmental Toxicology and Occupational Medicine, vol. 6, no. 2, pp. 189–204, 1997.
[20]  US Environmental Protection Agency, “Guidance on cumulative risk assessment of pesticide chemicals that have a common mechanism of toxicity,” Office of Pesticide Programs, Washington, DC, USA, 2002, http://www.epa.gov/oppfead1/trac/science/cumulative_guidance.pdf.
[21]  US Environmental Protection Agency, “Organophosphorus cumulative risk assessment—2006 Update,” Office of Pesticide Programs, Washington, DC, USA, http://www.epa.gov/pesticides/cumulative/2006-op/op_cra_main.pdf.
[22]  US Environmental Protection Agency, “Developing relative potency factors for pesticide mixtures: biostatistical analyses of joint dose-response,” EPA/ 600/R-03/052, National Center for Environmental Assessment, Cincinnati, OH, USA, in collaboration with US Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA, 2003, http://oaspub.epa.gov/eims/eimscomm.getfile?p_download_id=427398, http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=66273.
[23]  J. J. Chen, Y. J. Chen, G. Rice et al., “Using dose addition to estimate cumulative risks from exposures to multiple chemicals,” Regulatory Toxicology and Pharmacology, vol. 34, no. 1, pp. 35–41, 2001.
[24]  M. T. Klein, G. Hou, R. J. Quann et al., “BioMOL: a computer-assisted biological modeling tool for complex chemical mixtures and biological processes at the molecular level,” Environmental Health Perspectives, vol. 110, supplement 6, pp. 1025–1029, 2002.
[25]  V. J. Feron, F. R. Cassee, J. P. Groten, P. W. van Vliet, and J. A. van Zorge, “International issues on human health effects of exposure to chemical mixtures,” Environmental Health Perspectives, vol. 110, supplement 6, pp. 893–899, 2002.
[26]  D. Jonker, A. P. Freidig, J. P. Groten et al., “Safety evaluation of chemical mixtures and combinations of chemical and non-chemical stressors,” Reviews on Environmental Health, vol. 19, no. 2, pp. 83–139, 2004.
[27]  National Institute of Environmental Health Sciences, “Your environment—your health,” 2012, http://www.niehs.nih.gov/.
[28]  Health Canada, “Environmental and workplace health,” 2012, http://www.hc-sc.gc.ca/ewh-semt/air/out-ext/research-recherche-eng.php.
[29]  K. Krishnan, S. Haddad, M. Béliveau, and R. Tardif, “Physiological modeling and extrapolation of pharmacokinetic interactions from binary to more complex chemical mixtures,” Environmental Health Perspectives, vol. 110, supplement 6, pp. 989–994, 2002.
[30]  California Environmental Protection Agency, “Rulemaking identification of particulate emissions from diesel-fueled engines as a toxic air contaminant,” Air Resources Board, Sacramento, CA, USA, 1998, http://www.arb.ca.gov/regact/diesltac/diesltac.htm.
[31]  Y. A. Sanchez, K. Deener, E. C. Hubal, C. Knowlton, D. Reif, and D. Segal, “Research needs for community-based risk assessment: findings from a multi-disciplinary workshop,” Journal of Exposure Science and Environmental Epidemiology, vol. 20, no. 2, pp. 186–195, 2010.
[32]  T. M. Barzyk, K. C. Conlon, T. Chahine, D. M. Hammond, V. G. Zartarian, and B. D. Schultz, “Tools available to communities for conducting cumulative exposure and risk assessments,” Journal of Exposure Science and Environmental Epidemiology, vol. 20, no. 4, pp. 371–384, 2010.
[33]  M. Medina-Vera, J. M. Van Emon, L. J. Melnyk, K. D. Bradham, S. L. Harper, and J. N. Morgan, “An overview of measurement method tools available to communities for conducting exposure and cumulative risk assessments,” Journal of Exposure Science and Environmental Epidemiology, vol. 20, no. 4, pp. 359–370, 2010.
[34]  P. Ruiz, M. Mumtaz, J. Osterloh, J. Fisher, and B. A. Fowler, “Interpreting NHANES biomonitoring data, cadmium,” Toxicology Letters, vol. 198, no. 1, pp. 44–48, 2010.
[35]  Centers for Disease Control and Prevention, “National health and nutrition examination study (NHANES),” 2012, http://www.cdc.gov/nchs/nhanes.htm.
[36]  US Environmental Protection Agency, “Health and environmental research online (HERO),” National Center for Environmental Assessment, Research Triangle Park, NC, USA, 2012, http://cfpub.epa.gov/ncea/hero/.
[37]  Toxicology Excellence for Risk Assessment, “International toxicity estimates for risk assessment (ITER),” Cincinnati, OH, USA, 2012, http://www.tera.org/iter/.
[38]  D. Payne-Sturges, J. Cohen, R. Castorina, D. A. Axelrod, and T. J. Woodruff, “Evaluating cumulative organophosphorus pesticide body burden of children: a national case study,” Environmental Science & Technology, vol. 43, no. 20, pp. 7924–7930, 2009.
[39]  A. S. Lewis, S. N. Sax, S. C. Wason, and S. L. Campleman, “Non-chemical stressors and cumulative risk assessment: an overview of current initiatives and potential air pollutant interactions,” International Journal of Environmental Research and Public Health, vol. 8, no. 6, pp. 2020–2073, 2011.
[40]  T. Chahine, B. D. Schultz, V. G. Zartarian, J. Xue, S. V. Subramanian, and J. Levy, “Modeling joint exposures and health outcomes for cumulative risk assessment: the case of radon and smoking,” International Journal of Environmental Research and Public Health, vol. 8, no. 9, pp. 3688–3711, 2011.
[41]  D. T. Lobdell, V. Isakov, L. Baxter, J. S. Touma, M. B. Smuts, and H. ?zkaynak, “Feasibility of assessing public health impacts of air pollution reduction programs on a local scale: New Haven case study,” Environmental Health Perspectives, vol. 119, no. 4, pp. 487–493, 2011.
[42]  K. M. Ellickson, S. M. Sevcik, S. Burman, S. Pak, F. Kohlasch, and G. C. Pratt, “Cumulative risk assessment and environmental equity in air permitting: interpretation, methods, community participation and implementation of a unique statute,” International Journal of Environmental Research and Public Health, vol. 8, no. 11, pp. 4140–4159, 2012.
[43]  K. Sexton and S. H. Linder, “Cumulative risk assessment for combined health effects from chemical and nonchemical stressors,” American Journal of Public Health, vol. 101, supplement 1, pp. S81–S88, 2011.
[44]  J. J. Salinas, M. Shah, B. Abdelbary, J. L. Gay, and K. Sexton, “Application of a novel method for assessing cumulative risk burden by county,” International Journal of Environmental Research and Public Health, vol. 9, no. 5, pp. 1820–1835, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133