全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Anthrax Lethal Toxin Inhibits the Production of Proinflammatory Cytokines

DOI: 10.1155/2013/476909

Full-Text   Cite this paper   Add to My Lib

Abstract:

In previous studies, we have found that anthrax lethal toxin (LeTx) induces apoptosis in both murine macrophages and human peripheral blood mononuclear cells (PBMCs). In this study, we further report that bacterial cell wall (CW) components of Bacillus (B.) anthracis are powerful inducers of proinflammatory cytokines from the PBMCs. These effects are deprived when the LeTx is present. The major causative element for this suppression is lethal factor (LF) rather than protective antigen (PA). These results indicate that the roles of LeTx in anthrax pathogenesis, particularly its effects on cytokine production, should be reevaluated as our findings and other reports are controversial to the conventional concept. 1. Introduction Anthrax is initiated by infection with B. anthracis, a Gram-positive, spore forming bacterium. Infection occurs through three primary routes: cutaneous, ingestion, and inhalation of the spores. Systemic infection by inhalation of the spores has become a major research focus due to several reasons. First and foremost is the likelihood that B. anthracis spores would be used as a biological weapon due to its ease of growth, long shelf life, stability in the environment, and the ability to be effectively disseminated in a large area to inflict high mortality. Furthermore, the inhalation form can cause septic shock that has a mortality rate approaching 100% with death occurring within a few days after onset of symptoms if vigorous treatment is not given immediately after exposure. Lastly, to date, there is no effective treatment for the late-stage infection and it is usually fatal, even with aggressive antibiotic therapy [1]. Therefore, given these factors, in conjunction with the increased threat of a biological attack, it is imperative that the true pathogenesis of this microbe should be understood so that new successful treatment methods can be developed. The virulence of B. anthracis depends on three plasmid-encoded factors: two secreted protein toxins and an antiphagocytic poly-D-glutamic acid capsule. The two toxins, collectively called anthrax toxin, are formed by the binary association of three proteins: PA (83?kDa), LF (90?kDa), and edema factor (EF, 89?kDa). PA either combines with LF to form lethal toxin (LeTx) or with EF to form edema toxin (EdTx) [2–4]. LeTx is considered to be responsible for the lysis of macrophages, which is accompanied by the release of cytokines, specifically tumor-necrosis-factor (TNF-) α and interleukin- (IL-) 1β. These cytokines are considered to be the major players responsible for septic shock, and

References

[1]  T. C. Dixon, M. Meselson, J. Guillemin, and P. C. Hanna, “Anthrax,” The New England Journal of Medicine, vol. 341, no. 11, pp. 815–826, 1999.
[2]  A. M. Friedlander, “The anthrax toxins,” in Trafficking of Bacterial Toxins, C. B. Saelingir, Ed., pp. 121–138, CRC Press, Boca Raton, Fla, USA, 1990.
[3]  S. H. Leppla, “Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations in eukaryotic cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 10 I, pp. 3162–3166, 1982.
[4]  S. H. Leppla, “The anthrax toxin complex,” in Sourcebook of Bacterial Protein Toxins, J. Alouf, Ed., pp. 277–302, Academic Press, New York, NY, USA, 1991.
[5]  P. Hanna, “Lethal toxin actions and their consequences,” Journal of Applied Microbiology, vol. 87, no. 2, pp. 285–287, 1999.
[6]  P. C. Hanna, B. A. Kruskal, R. A. Ezekowitz, B. R. Bloom, and R. J. Collier, “Role of macrophage oxidative burst in the action of anthrax lethal toxin,” Molecular Medicine, vol. 1, no. 1, pp. 7–18, 1994.
[7]  N. S. Duesbery and G. F. V. Woude, “Anthrax toxins,” Cellular and Molecular Life Sciences, vol. 55, no. 12, pp. 1599–1609, 1999.
[8]  J. O'Brien, A. Friedlander, and T. Dreier, “Effects of anthrax toxin components on human neutrophils,” Infection and Immunity, vol. 47, no. 1, pp. 306–310, 1985.
[9]  B. E. Ivins, S. L. Welkos, S. F. Little, M. H. Crumrine, and G. O. Nelson, “Immunization against anthrax with Bacillus anthracis protective antigen combined with adjuvants,” Infection and Immunity, vol. 60, no. 2, pp. 662–668, 1991.
[10]  P. C. Hanna, D. Acosta, and R. J. Collier, “On the role of macrophages in anthrax,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 21, pp. 10198–10201, 1993.
[11]  J. L. Erwin, L. M. Dasilva, S. Bavari, S. F. Little, A. M. Friedlander, and T. C. Chanh, “Macrophage-derived cell lines do not express proinflammatory cytokines after exposure to Bacillus anthracis lethal toxin,” Infection and Immunity, vol. 69, no. 2, pp. 1175–1177, 2001.
[12]  R. Pellizzari, C. Guidi-Rontani, G. Vitale, M. Mock, and C. Montecucco, “Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/IFNγ-induced release of NO and TNFα,” FEBS Letters, vol. 462, no. 1-2, pp. 199–204, 1999.
[13]  C. R. H. Raetz, “Biochemistry of endotoxins,” Annual Review of Biochemistry, vol. 59, pp. 129–170, 1990.
[14]  B. Henderson and M. Wilson, “Cytokine induction by bacteria: beyond lipopolysaccharide,” Cytokine, vol. 8, no. 4, pp. 269–282, 1996.
[15]  B. Henderson and M. Wilson, “Modulins: a new class of cytokine-inducing, pro-inflammatory bacterial virulence factor,” Inflammation Research, vol. 44, no. 5, pp. 187–197, 1995.
[16]  B. Henderson, S. Poole, and M. Wilson, “Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis,” Microbiological Reviews, vol. 60, no. 2, pp. 316–341, 1996.
[17]  A. E. Medvedev, T. Flo, R. R. Ingalls et al., “Involvement of CD14 and complement receptors CR3 and CR4 in nuclear factor-κB activation and TNF production induced by lipopolysaccharide and group B streptococcal cell walls,” Journal of Immunology, vol. 160, no. 9, pp. 4535–4542, 1998.
[18]  R. Chen, R. Lowe, J. D. Wilson et al., “Simultaneous quantification of six human cytokines in a single sample using microparticle-based flow cytometric technology,” Clinical Chemistry, vol. 45, pp. 1693–1694, 1999.
[19]  M. Moser and K. M. Murphy, “Dendritic cell regulation of TH1-TH2 development,” Nature Immunology, vol. 1, no. 3, pp. 199–205, 2000.
[20]  M. F. Neurath, S. Finotto, and L. H. Glimcher, “The role of TH1/TH2 polarization in mucosal immunity,” Nature Medicine, vol. 8, no. 6, pp. 567–573, 2002.
[21]  S. G. Popov, R. Villasmil, J. Bernardi et al., “Lethal toxin of Bacillus anthracis causes apoptosis of macrophages,” Biochemical and Biophysical Research Communications, vol. 293, no. 1, pp. 349–355, 2002.
[22]  S. G. Popov, R. Villasmil, J. Bernardi et al., “Effect of Bacillus anthracis lethal toxin on human peripheral blood mononuclear cells,” FEBS Letters, vol. 527, no. 1-3, pp. 211–215, 2002.
[23]  G. Whiting, M. Baker, and S. Rijpkema, “Development of an in vitro potency assay for anti-anthrax lethal toxin neutralizing antibodies,” Toxins, vol. 4, no. 1, pp. 28–41, 2012.
[24]  A. Cleret-Buhot, J. Mathieu, J. N. Tournier, and A. Quesnel-Hellmann, “Both lethal and edema toxins of Bacillus anthracis disrupt the human dendritic cell chemokine network,” PLoS One, vol. 7, no. 8, Article ID e43266, 2012.
[25]  C. M. Gonzales, C. B. Williams, V. E. Calderon et al., “Antibacterial role for natural killer cells in host defense to Bacillus anthracis,” Infection and Immunity, vol. 80, no. 1, pp. 234–242, 2012.
[26]  E. K. Dumas, P. M. Cox, C. O. Fullenwider et al., “Anthrax lethal toxin-induced gene expression changes in mouse lung,” Toxins, vol. 3, no. 9, pp. 1111–1130, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413