全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mitochondrial PCR-RFLP Assay to Distinguish Triatoma brasiliensis macromelasoma from Triatoma brasiliensis brasiliensis Subspecies (Hemiptera: Reduviidae)

DOI: 10.1155/2013/305198

Full-Text   Cite this paper   Add to My Lib

Abstract:

Triatoma brasiliensis sensu lato (s.l.), the main vector of Chagas disease in northeastern Brazil, is a species complex comprising four species, one with two subspecies (T. brasiliensis brasiliensis, T. brasiliensis macromelasoma, T. juazeirensis, T. sherlocki, and T. melanica), and each taxon displaying distinct ecological requirements. In order to evaluate the genetic relationships among nine T. brasiliensis s.l. populations from northeastern Brazil, we analyzed their mitochondrial cytochrome c oxidase subunit 1 sequences and suggested a PCR-RFLP assay to distinguish between T. b. macromelasoma and T. b. brasiliensis subspecies. All the specimens were morphologically identified as T. b. brasiliensis. The resulting phylogenies identified two major clades that are congruent with the geographical populations studied. Based on collection sites and in accordance with type-location, one clade was identified as the subspecies T. b. macromelasoma. The second clade grouped T. b. brasiliensis populations. Restriction endonuclease sites were observed in the sequences and used in PCR-RFLP assays, producing distinct fingerprints for T. b. macromelasoma and T. b. brasiliensis populations. The results suggest that these are different species and that gene flow occurs only among T. b. brasiliensis populations, possibly associated with human activity in the area. 1. Introduction About 28 million people live in areas at risk of Chagas disease, 11–14.5 million of whom are affected worldwide. Trypanosoma cruzi, the pathogen that causes Chagas disease, is found in most South American countries, representing an important cause of heart damage among the economically active population [1]. After a successful chemical control of Triatoma infestans (Klugi, 1834), the other main vectors of Chagas causing agent, Panstrongylus megistus Burmeister, 1835, Rhodnius prolixus Stal, 1859, and Triatoma brasiliensis sensu lato Neiva 1911. T. brasiliensis kept attracting considerable attention from local entomological surveillance. Triatoma brasiliensis sensu lato (s.l.), found in anthropogenic habitats and considered the main vector in northeast Brazil [2, 3], was recently found to be a species complex that includes T. b. brasiliensis, T. b. macromelasoma Galv?o, 1956, T. juazeirensis Costa & Felix, 2007, T. sherlocki Papa, Jurberg, Carcavallo, Cerqueira & Barata, 2002, and T. melanica Costa et al., 2006. These taxa exhibit wide phenotypic and morphological variability, displaying specific ecological requirements and chromatic patterns [4]. In this respect, accurate species

References

[1]  á. Moncayo and A. C. Silveira, “Current epidemiological trends for Chagas disease in Latin America and future challenges in epidemiology, surveillance and health policy,” Memorias do Instituto Oswaldo Cruz, vol. 104, no. 1, pp. 17–30, 2009.
[2]  A. C. Silveira and M. C. Vinhaes, “Elimination of vector-borne transmission of chagas disease,” Memorias do Instituto Oswaldo Cruz, vol. 94, no. 1, pp. 405–411, 1999.
[3]  J. Costa, C. E. Almeida, J. P. Dujardin, and C. B. Beard, “Crossing experiments detect genetic incompatibility among populations of Triatoma brasiliensis Neiva, 1911 (Heteroptera, Reduviidae, Triatominae),” Memorias do Instituto Oswaldo Cruz, vol. 98, no. 5, pp. 637–639, 2003.
[4]  V. J. Mendon?a, M. T. A. Da Silva, R. F. De Araújo et al., “Phylogeny of Triatoma sherlocki (Hemiptera: Reduviidae:Triatominae) inferred from two mitochondrial genes suggests its location within the Triatoma brasiliensis complex,” American Journal of Tropical Medicine and Hygiene, vol. 81, no. 5, pp. 858–864, 2009.
[5]  H. Lent and P. Wygodzinsky, “Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas' disease,” Bulletin of the American Museum of Natural History, vol. 16, pp. 123–520, 1979.
[6]  C. Galv?o, F. M. McAloon, D. S. Rocha, C. W. Schaefer, J. Patterson, and J. Jurberg, “Description of eggs and nymphs of Linshcosteus karupus (Hemiptera: Reduviidae: Triatominae),” Annals of the Entomological Society of America, vol. 98, no. 6, pp. 861–872, 2005.
[7]  J. Costa, M. G. R. Freitas-Sibajev, V. Marchon-Silva, M. Q. Pires, and R. S. Pacheco, “Isoenzymes Detect Variation in Populations of Triatoma brasiliensis (Hemiptera: Reduviidae: Triatominae),” Memorias do Instituto Oswaldo Cruz, vol. 92, no. 4, pp. 459–464, 1997.
[8]  C. E. Almeida, R. S. Pacheco, K. Haag, S. Dupas, E. M. Dotson, and J. Costa, “Inferring from the Cyt B gene the Triatoma brasiliensis Neiva, 1911 (Hemiptera: Reduviidae: Triatominae) genetic structure and domiciliary infestation in the State of Paraíba, Brazil,” American Journal of Tropical Medicine and Hygiene, vol. 78, no. 5, pp. 791–802, 2008.
[9]  E. C. Borges, A. J. Romanha, and L. Diotaiuti, “Use of random amplified polymorphic DNA (RAPD) in the populational study of Triatoma brasiliensis Neiva, 1911,” Cadernos de Saúde Pública, vol. 16, pp. 97–100, 2000.
[10]  J. Costa, C. E. Almeida, E. M. Dotson et al., “The epidemiologic importance of Triatoma brasiliensis as a chagas disease vector in Brazil: a revision of domiciliary captures during 1993–1999,” Memorias do Instituto Oswaldo Cruz, vol. 98, no. 4, pp. 443–449, 2003.
[11]  J. Costa, A. T. Peterson, and J. P. Dujardin, “Morphological evidence suggests homoploid hybridization as a possible mode of speciation in the Triatominae (Hemiptera, Heteroptera, Reduviidae),” Infection, Genetics and Evolution, vol. 9, no. 2, pp. 263–270, 2009.
[12]  O. Folmer, M. Black, W. Hoeh, R. Lutz, and R. Vrijenhoek, “DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates,” Molecular marine biology and biotechnology, vol. 3, no. 5, pp. 294–299, 1994.
[13]  J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Research, vol. 22, no. 22, pp. 4673–4680, 1994.
[14]  K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011.
[15]  T. Vincze, J. Posfai, and R. J. Roberts, “NEBcutter: a program to cleave DNA with restriction enzymes,” Nucleic Acids Research, vol. 31, no. 13, pp. 3688–3691, 2003.
[16]  F. A. Monteiro, M. J. Donnelly, C. B. Beard, and J. Costa, “Nested clade and phylogeographic analyses of the Chagas disease vector Triatoma brasiliensis in Northeast Brazil,” Molecular Phylogenetics and Evolution, vol. 32, no. 1, pp. 46–56, 2004.
[17]  C. J. Belisário, G. C. D. Pessoa, and L. Diotaiuti, “Biological aspects of crosses between Triatoma maculata (Erichson, 1848) and Triatoma pseudomaculata Corrêa & Espínola, 1964 (Hemiptera: Reduviidae),” Memorias do Instituto Oswaldo Cruz, vol. 102, no. 4, pp. 517–521, 2007.
[18]  S. M. dos Santos, C. M. Lopes, J. P. Dujardin et al., “Evolutionary relationships based on genetic and phenetic characters between Triatoma maculata, Triatoma pseudomaculata and morphologically related species (Reduviidae: Triatominae),” Infection, Genetics and Evolution, vol. 7, no. 4, pp. 469–475, 2007.
[19]  F. A. Carvalho-Costa, S. M. Dos Santos, M. Q. Pires, C. M. Lopes, F. Noireau, and R. S. Pacheco, “Sylvatic and peridomestic populations of Triatoma pseudomaculata are not significantly structured by habitat, as revealed by two genetic markers,” Journal of Vector Ecology, vol. 35, no. 2, pp. 295–300, 2010.
[20]  A. Marcilla, M. D. Bargues, F. Abad-Franch et al., “Nuclear rDNA ITS-2 sequences reveal polyphyly of Panstrongylus species (Hemiptera: Reduviidae: Triatominae), vectors of Trypanosoma cruzi,” Infection, Genetics and Evolution, vol. 1, no. 3, pp. 225–235, 2002.
[21]  R. P. Crossa, M. Hernández, M. N. Caraccio et al., “Chromosomal evolution trends of the genus Panstrongylus (Hemiptera, Reduviidae), vectors of Chagas disease,” Infection, Genetics and Evolution, vol. 2, no. 1, pp. 47–56, 2002.
[22]  F. B. S. Dias, A. S. D. Paula, C. J. Belisário et al., “Influence of the palm tree species on the variability of Rhodnius nasutus St?l, 1859 (Hemiptera, Reduviidae, Triatominae),” Infection, Genetics and Evolution, vol. 11, no. 5, pp. 869–877, 2011.
[23]  C. E. Almeida, R. S. Pacheco, F. Noireau, and J. Costa, “Triatoma rubrovaria (Blanchard, 1843) (Hemiptera: Reduviidae) I: isoenzymatic and chromatic patterns of five populations from the State of Rio Grande do Sul, Brazil,” Memorias do Instituto Oswaldo Cruz, vol. 97, no. 6, pp. 829–834, 2002.
[24]  N. Correia, C. E. Almeida, V. Lima-Neiva et al., “Cross-mating experiments detect reproductive compatibility between Triatoma sherlocki and other members of the Triatoma brasiliensis species complex.,” Acta Tropica, vol. 128, pp. 162–167, 2013.
[25]  F. T. van Emden, “The taxonomic significance of the characters of immature insects,” Annual Review of Entomology, vol. 2, pp. 91–106, 1957.
[26]  J. Costa, A. M. Argolo, and M. Felix, “Taken of Triatoma melanica Neiva & Lent, 1941, new status (Hemiptera: Reduviidae: Triatominae),” Zootaxa, vol. 1385, pp. 47–52, 2006.
[27]  J. M. Ramsey and C. J. Schofield, “Control of Chagas disease vectors,” Salud Publica de Mexico, vol. 45, no. 2, pp. 123–128, 2003.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133