全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Webuye Health and Demographic Surveillance Systems Baseline Survey of Soil-Transmitted Helminths and Intestinal Protozoa among Children up to Five Years

DOI: 10.1155/2013/734562

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. The intestinal parasitic infections (IPIs) are globally endemic, and they constitute the greatest cause of illness and disease worldwide. Transmission of IPIs occurs as a result of inadequate sanitation, inaccessibility to potable water, and poor living conditions. Objectives. To determine a baseline prevalence of IPIs among children of five years and below at Webuye Health and Demographic Surveillance (HDSS) area in western Kenya. Methods. Cross-sectional survey was used to collect data. Direct saline and formal-ether-sedimentation techniques were used to process the specimens. Descriptive and inferential statistics such as Chi-square statistics were used to analyze the data. Results. A prevalence of 52.3% (417/797) was obtained with the male child slightly more infected than the female (53.5% versus 51%), but this was not significant ( , ). Giardia lamblia and Entamoeba histolytica were the most common pathogenic IPIs with a prevalence of 26.1% (208/797) and 11.2% (89/797), respectively. Soil-transmitted helminths (STHs) were less common with a prevalence of 4.8% (38/797), 3.8% (30/797), and 0.13% (1/797) for Ascaris lumbricoides, hookworms, and Trichuris trichiura, respectively. Conclusions. Giardia lamblia and E. histolytica were the most prevalent pathogenic intestinal protozoa, while STHs were less common. Community-based health promotion techniques are recommended for controlling these parasites. 1. Introduction It is estimated that approximately a billion people in developing countries of the sub-Saharan Africa, Asia, and the Americas are infected with one or more helminths [1]. About 300 million people are severely ill with intestinal parasitic infections (IPIs), out of which, approximately 50% are school-age children [2]. The IPIs are globally endemic and are responsible for the greatest worldwide cause of illnesses and disease [3, 4]. These parasites cause high morbidity in school children and women during child-bearing age. The IPIs occur wherever there are poor living conditions, which immensely contribute to economic loss and poor health [1, 3, 4]. Ascaris lumbricoides, Trichuris trichiura, and hookworm species, collectively referred to as soil-transmitted helminths (STHs), are the most common intestinal parasites known to mankind [5]. Bethony et al. [5] have observed that children living in less developed countries are likely to be infected with one or more STH. Infections with these parasites affect the physical and cognitive development of school-age children [5]. Similarly, Giardia lamblia infects about 200 million people

References

[1]  P. J. Hotez, P. J. Brindley, J. M. Bethony, C. H. King, E. J. Pearce, and J. Jacobson, “Helminth infections: the great neglected tropical diseases,” Journal of Clinical Investigation, vol. 118, no. 4, pp. 1311–1321, 2008.
[2]  S. Waqar, H. Hussain, R. Khan, et al., “Intestinal parasitic infections in children from the Northern Pakistan,” Infectious Diseases Journal, vol. 12, pp. 73–77, 2003.
[3]  R. W. Steketee, “Pregnancy, nutrition and parasitic diseases,” Journal of Nutrition, vol. 133, pp. 1661S–1667S, 2003.
[4]  F. Curtale, P. Pezzotti, A. L. Sharbini et al., “Knowledge, perceptions and behaviour of mothers toward intestinal helminths in Upper Egypt: implications for control,” Health Policy and Planning, vol. 13, no. 4, pp. 423–432, 1998.
[5]  J. Bethony, S. Brooker, M. Albonico et al., “Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm,” The Lancet, vol. 367, no. 9521, pp. 1521–1532, 2006.
[6]  D. R. Pillai and K. C. Kain, “Common intestinal parasites,” Current Treatment Options in Infectious Diseases, vol. 5, pp. 207–217, 2003.
[7]  T. Minenoa and M. A. Avery, “Giardiasis: recent progress in chemotherapy and drug development,” Current Pharmaceutical Design, vol. 9, pp. 841–855, 2003.
[8]  R. Ndyomugyenyi, N. Kabatereine, A. Olsen, and P. Magnussen, “Malaria and hookworm infections in relation to haemoglobin and serum ferritin levels in pregnancy in Masindi district, western Uganda,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 102, no. 2, pp. 130–136, 2008.
[9]  A. Olsen, P. Magnussen, J. H. Ouma, J. Andreassen, and H. Friis, “The contribution of hookworm and other parasitic infections to haemoglobin and iron status among children and adults in western Kenya,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 92, no. 6, pp. 643–649, 1998.
[10]  C. C. Appleton, T. I. Mosala, J. Levin, and A. Olsen, “Geohelminth infection and re-infection after chemotherapy among slum-dwelling children in Durban, South Africa,” Annals of Tropical Medicine and Parasitology, vol. 103, no. 3, pp. 249–261, 2009.
[11]  A. M. van Eijk, K. A. Lindblade, F. Odhiambo et al., “Geohelminth infections among pregnant women in rural western Kenya: a cross-sectional study,” PLoS Neglected Tropical Diseases, vol. 3, no. 1, article e370, 2009.
[12]  C. Nokes, S. M. Grantham-McGregor, A. W. Sawyer, E. S. Cooper, B. A. Robinson, and D. A. P. Bundy, “Moderate to heavy infections of Trichuris trichiura affect cognitive function in Jamaican school children,” Parasitology, vol. 104, no. 3, pp. 539–547, 1992.
[13]  Webuye Health and Demographic Surveillance System: Fact Sheet no. 1, 2009, Unpublished data.
[14]  Webuye District Hospital Annual Report, 2008, Unpublished data.
[15]  Webuye Climate Pattern, 2012, http://en.wikipedia.org/wiki/Webuye.
[16]  C. J. Simiyu, V. Naanyu, A. Obala, et al., “Establishing webuye health and demographic surveillance site in rural western Kenya: challenges and lessons learned,” in Population Association of America Annual Meeting Problem, New Orleans, La, USA, April 2013.
[17]  O. M. Mugenda and A. G. Mugenda, Research Methods: Quantitative and Qualitative Approaches, African Centre of Technology Studies, Nairoibi, Kenya, 1999.
[18]  L. S. Ritchie, “An ether sedimentation technique for routine stool examination,” Bulletin: United States Army Medical Department, vol. 8, article 326, 1948.
[19]  V. Mehraj, J. Hatcher, S. Akhtar, G. Rafique, and M. A. Beg, “Prevalence and factors associated with intestinal parasitic infection among children in an urban slum of Karachi,” PLoS ONE, vol. 3, no. 11, Article ID e3680, 2008.
[20]  Z. Tahir, “Comparasion of prevalence of intestinal parasites in children and adult population,” Biomedica, vol. 18, pp. 74–75, 2002.
[21]  V. Srinivasan, S. Radhakrishna, A. M. Ramanathan, and S. Jabbar, “Hookworm infection in a rural community in South India and its association with haemoglobin levels,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 81, no. 6, pp. 973–977, 1987.
[22]  M. I. Siddiqui, F. M. Bilqees, M. Iliyas, and S. Perveen, “Prevalence of parasitic infections in a rural area of Karachi, Pakistan,” Journal of the Pakistan Medical Association, vol. 52, no. 7, pp. 315–320, 2002.
[23]  Kenya National School-Based Deworming Program, http://www.dewormtheworld.org/our-work/kenya-national-school-based-deworming-program.
[24]  Z. H. Chaudhry, M. Afzal, and M. A. Malik, “Epidemiological factors affecting prevalence of intestinal parasites in children of Muzaffarabad district,” Pakistan Journal of Zoology, vol. 36, no. 4, pp. 267–271, 2004.
[25]  R. Muller, Worms and Disease: A Manual of Medical Helminthology, Butler and Tanners, 1975.
[26]  A. Jardim-Botelho, S. Raff, R. D. A. Rodrigues et al., “Hookworm, Ascaris lumbricoides infection and polyparasitism associated with poor cognitive performance in Brazilian schoolchildren,” Tropical Medicine and International Health, vol. 13, no. 8, pp. 994–1004, 2008.
[27]  G. T. Keusch and P. Migasena, “Biological implications of polyparasitism,” Reviews of Infectious Diseases, vol. 4, no. 4, pp. 880–882, 1982.
[28]  Webuye economic activities and soil types, http://www.chinci.com/travel/pax/q/178201/Webuye/KE/Kenya/0/.
[29]  FAO Corporate Document Repository, 1988, “Management of Vertisols in sub-Saharan Africa,” in Proceedings of a Conference Held at ILCA, Addis Ababa, Ethiopia, September 1987, http://www.fao.org/Wairdocs/ILRI/x5493E/x5493e00.htm.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133