全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparison of Oral Tolerance to ApoB and HSP60 Peptides in Preventing Atherosclerosis Lesion Formation in Apob48?/Ldlr? Mice

DOI: 10.1155/2013/212367

Full-Text   Cite this paper   Add to My Lib

Abstract:

Antigen-specific immune modulation is emerging as an attractive therapeutic option to prevent atherosclerosis. We compared the efficacy of oral administration of peptides derived from apolipoprotein B (ApoB; 661–680) and heat shock protein 60 (HSP60; 153–163), in the prevention of atherosclerotic lesion formation hyperlipidemic low density lipoprotein receptordeficient (LDLr?/?), apolipoprotein B-100 only (apoB100/100) mice model. Oral administration of peptides induced tolerance as seen by an increase in regulatory T cells in the peripheral immune system. Tolerance to ApoB peptide reduced plaque development by 28.7% ( ) while HSP60 was effective in reducing lesion development by 26.8% in ApoB48/LDLr?/? mice. While tolerance to HSP60 resulted in increase in anti-inflammatory cytokines (IL10 and TGF-β), ApoB tolerance was effective in reducing the lipid deposition in the lesion. Our results suggest that the two peptides have distinct mechanisms of controlling the development of atherosclerosis in mice. 1. Introduction Coronary artery disease remains the major cause of death and disability throughout the world despite the introduction of novel therapeutics [1]. Experimental observations in the past decade have proved that both innate and adaptive immune responses play an important role in the modulation of atherosclerosis. The complex role of the immune response in atherosclerosis is highlighted by the fact that they can contribute to both atheroprotective and proatherogenic effects [2–4]. The immune system generates regulatory T cells (Tregs), which actively suppress immune activation and maintain immune homeostasis [5, 6]. An imbalance between pathogenic T cells producing proatherogenic mediators and Treg cells with immunosuppressive properties is well established during the development of disease [7–9]. Thus antigen-specific immune modulation is emerging as an attractive therapeutic option to prevent inflammatory autoimmune diseases such as atherosclerosis [10–12]. The observation that immunization with modified low-density lipoproteins can reduce the atherosclerotic lesion in experimental models has opened the possibility that an atheroprotective vaccine can be developed [13–16]. Several antigens like the oxidized phospholipid molecules, modified apolipoprotein B-100 (ApoB) peptide, cholesteryl ester transfer protein, heat shock proteins, and vascular endothelial growth factor receptor have been used as a vaccine for the modification of immune response in atherosclerosis [4]. Immunotherapy is directed toward inducing tolerance to self-antigens

References

[1]  C. Baigent, A. Keech, P. M. Kearney, et al., “Efficacy and safety of cholesterollowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins,” Lancet, vol. 366, no. 9493, pp. 1267–1278, 2005.
[2]  J. Andersson, P. Libby, and G. K. Hansson, “Adaptive immunity and atherosclerosis,” Clinical Immunology, vol. 134, no. 1, pp. 33–46, 2010.
[3]  G. K. Hansson, “Immune mechanisms in atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, pp. 1876–1890, 2001.
[4]  G. K. Hansson, “Mechanisms of disease: inflammation, atherosclerosis, and coronary artery disease,” New England Journal of Medicine, vol. 352, no. 16, pp. 1685–1626, 2005.
[5]  S. Sakaguchi, “Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self,” Nature Immunology, vol. 6, no. 4, pp. 345–352, 2005.
[6]  H. von Boehmer, “Mechanisms of suppression by suppressor T cells,” Nature Immunology, vol. 6, no. 4, pp. 338–344, 2005.
[7]  Z. Mallat and A. Tedgui, “Immunomodulation to combat atherosclerosis: the potential role of immune regulatory cells,” Expert Opinion on Biological Therapy, vol. 4, no. 9, pp. 1387–1393, 2004.
[8]  G. K. Hansson, “Atherosclerosis—an immune disease. The anitschkov lecture 2007,” Atherosclerosis, vol. 202, no. 1, pp. 2–10, 2009.
[9]  Z. Mallat, H. Ait-Oufella, and A. Tedgui, “Regulatory T-cell immunity in atherosclerosis,” Trends in Cardiovascular Medicine, vol. 17, no. 4, pp. 113–118, 2007.
[10]  G. K. Hansson and J. Nilsson, “Vaccination against atherosclerosis? Induction of atheroprotective immunity,” Seminars in Immunopathology, vol. 31, no. 1, pp. 95–101, 2009.
[11]  L. A. Mundkur and V. V. Kakkar, “Immune modulation as a therapeutic strategy for atherosclerosis,” Current Drug Therapy, vol. 5, no. 4, pp. 288–300, 2010.
[12]  J. Nilsson, G. N. Fredrikson, H. Bj?rkbacka, K. Y. Chyu, and P. K. Shah, “Vaccines modulating lipoprotein autoimmunity as a possible future therapy for cardiovascular disease,” Journal of Internal Medicine, vol. 266, no. 3, pp. 221–231, 2009.
[13]  S. Ameli, A. Hultg?rdh-Nilsson, J. Regnstr?m et al., “Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 16, no. 8, pp. 1074–1079, 1996.
[14]  C. J. Binder, S. H?rkk?, A. Dewan et al., “Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL,” Nature Medicine, vol. 9, no. 6, pp. 736–743, 2003.
[15]  W. Palinski, E. Miller, and J. L. Witztum, “Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 3, pp. 821–825, 1995.
[16]  X. Zhou, G. Caligiuri, A. Hamsten, A. K. Lefvert, and G. K. Hansson, “LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 1, pp. 108–114, 2001.
[17]  R. V. Farese Jr., M. M. Véniant, C. M. Cham et al., “Phenotypic analysis of mice expressing exclusively apolipoprotein B48 or apolipoprotein B100,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 13, pp. 6393–6398, 1996.
[18]  S. A. Ahmed, R. M. Gogal Jr., and J. E. Walsh, “A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay,” Journal of Immunological Methods, vol. 170, no. 2, pp. 211–224, 1994.
[19]  R. Maron, G. Sukhova, A. M. Faria et al., “Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice,” Circulation, vol. 106, no. 13, pp. 1708–1715, 2002.
[20]  G. H. M. van Puijvelde, A. D. Hauer, P. de Vos et al., “Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis,” Circulation, vol. 114, no. 18, pp. 1968–1976, 2006.
[21]  J. George, N. Yacov, E. Breitbart et al., “Suppression of early atherosclerosis in LDL-receptor deficient mice by oral tolerance with β2-glycoprotein I,” Cardiovascular Research, vol. 62, no. 3, pp. 603–609, 2004.
[22]  H. Ait-Oufella, B. L. Salomon, S. Potteaux et al., “Natural regulatory T cells control the development of atherosclerosis in mice,” Nature Medicine, vol. 12, no. 2, pp. 178–180, 2006.
[23]  G. H. M. van Puijvelde, T. van Es, E. J. A. van Wanrooij et al., “Induction of oral tolerance to HSP60 or an HSP60-peptide activates t cell regulation and reduces atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 12, pp. 2677–2683, 2007.
[24]  N. Sasaki, T. Yamashita, M. Takeda et al., “Oral anti-CD3 antibody treatment induces regulatory t cells and inhibits the development of atherosclerosis in mice,” Circulation, vol. 120, no. 20, pp. 1996–2005, 2009.
[25]  R. Klingenberg, M. Lebens, A. Hermansson et al., “Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 5, pp. 946–952, 2010.
[26]  G. L. Stephens and E. M. Shevach, “Foxp3+ regulatory T cells: selfishness under scrutiny,” Immunity, vol. 27, no. 3, pp. 417–419, 2007.
[27]  Z. Mallat, S. Taleb, H. Ait-Oufella, and A. Tedgui, “The role of adaptive T cell immunity in atherosclerosis,” Journal of Lipid Research, vol. 50, pp. S364–S369, 2009.
[28]  A. Mor, D. Planer, G. Luboshits et al., “Role of naturally occurring CD4+CD25+ regulatory T cells in experimental atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 4, pp. 893–900, 2007.
[29]  D. Harats, N. Yacov, B. Gilburd, Y. Shoenfeld, and J. George, “Oral tolerance with heat shock protein 65 attenuates Mycobacterium tuberculosis-induced and high-fat-diet-driven atherosclerotic lesions,” Journal of the American College of Cardiology, vol. 40, no. 7, pp. 1333–1338, 2002.
[30]  D. J. Grainger, “Transforming growth factor β and atherosclerosis: so far, so good for the protective cytokine hypothesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 3, pp. 399–404, 2004.
[31]  A. C. Doran, N. Meller, and C. A. McNamara, “Role of smooth muscle cells in the initiation and early progression of atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 5, pp. 812–819, 2008.
[32]  X. Lu, D. Chen, V. Endresz et al., “Immunization with a combination of ApoB and HSP60 epitopes significantly reduces early atherosclerotic lesion in Apobtm2SgyLdlrtm1Her/J mice,” Atherosclerosis, vol. 212, no. 2, pp. 472–480, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413