全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

New Quantitative Method to Identify NPM1 Mutations in Acute Myeloid Leukaemia

DOI: 10.1155/2013/756703

Full-Text   Cite this paper   Add to My Lib

Abstract:

Somatic mutations in the NPM1 gene, which encodes for nucleophosmin, have been reported to be the most frequent genetic abnormalities found in acute myeloid leukaemia (AML). Their identification and quantification remain crucial for the patients’ residual disease monitoring. We investigated a new method that could represent a novel reliable alternative to sequencing for its identification. This method was based on high-resolution melting analysis in order to detect mutated patients and on an allele-specific oligonucleotide real-time quantitative polymerase chain reaction (ASO-RQ-PCR) for the identification and quantification of the transcripts carrying NPM1 mutations (NPM1m). Few patients carrying known NPM1m enabled us to set up a table with the different primers’ ΔCT values, identifying a profile for each mutation type. We then analysed a series of 337 AML patients' samples for NPM1 mutational status characterization and confirmed the ASO-RQ-PCR results by direct sequencing. We identified some mutations in 86 samples, and the results were fully correlated in 100% of the 36 sequenced samples. We also detected other rare NPM1m in two samples, that we confirmed by direct sequencing. This highly specific method provides a novel quick, useful, and costless tool, easy to use in routine practice. 1. Introduction Nucleophosmin mutations (NPM1m) occur in about one-third of acute myeloid leukaemias (AMLs) [1], and the current classification of myeloid neoplasms defined a recent entity of NPM1-mutated AML with distinct biological, clinical, and prognostic features [2]. Moreover, the detection and quantification of NPM1m represents a major specific marker for the molecular monitoring of minimal residual disease (MRD) in AML, since it appears as an early initiating event in leukaemogenesis [3, 4]. The expression of this marker is very stable during disease evolution, and the detection of increasing NPM1m expression levels seems strongly predictive for impending haematological relapse [5, 6]. Finally, patients’ stratification in international clinical protocols and the development of new targeted therapies rely on the NPM1 status in AML [7]. Thus, the identification of NPM1m is of critical importance for the AML patients’ admission process. Most of the NPM1m identified to date, as the type A mutation (75–80% of cases), are exon 12 frameshift mutations [1, 5, 8] leading to an aberrant accumulation of the protein in the cytoplasm [9]. Several protocols and methods have been developed for the detection of NPM1m including DNA sequencing of different mutation-specific

References

[1]  B. Falini, C. Mecucci, E. Tiacci et al., “Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype,” New England Journal of Medicine, vol. 352, no. 3, pp. 254–266, 2005.
[2]  D. A. Arber, R. D. Brunning, M. M. Le Beau, et al., “Acute myeloid leukemia with recurrent genetic abnormalities,” in WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, S. H. Swerdlow, E. Campo, N. L. Harris, et al., Eds., pp. 110–123, International Agency for Research on Cancer (IARC), 4th edition, 2008.
[3]  B. Falini, M. P. Martelli, N. Bolli et al., “Acute myeloid leukemia with mutated nucleophosmin (NPM1): is it a distinct entity?” Blood, vol. 117, no. 4, pp. 1109–1120, 2011.
[4]  G. S. Vassiliou, J. L. Cooper, R. Rad et al., “Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice,” Nature Genetics, vol. 43, no. 5, pp. 470–476, 2011.
[5]  S. Schnittger, W. Kern, C. Tschulik et al., “Minimal residual disease levels assessed by NPM1 mutation-specific RQ-PCR provide important prognostic information in AML,” Blood, vol. 114, no. 11, pp. 2220–2231, 2009.
[6]  T. Kristensen, M. B. M?ller, L. Friis, O. J. Bergmann, and B. Preiss, “NPM1 mutation is a stable marker for minimal residual disease monitoring in acute myeloid leukaemia patients with increased sensitivity compared to WT1 expression,” European Journal of Haematology, vol. 87, no. 5, pp. 400–408, 2011.
[7]  B. Falini, I. Gionfriddo, F. Cecchetti, S. Ballanti, V. Pettirossi, and M. P. Martelli, “Acute myeloid leukemia with mutated nucleophosmin (NPM1): any hope for a targeted therapy?” Blood Reviews, vol. 25, no. 6, pp. 247–254, 2011.
[8]  R. Rau and P. Brown, “Nucleophosmin (NPM1) mutations in adult and childhood acute myeloid leukaemia: towards definition of a new leukaemia entity,” Hematological Oncology, vol. 27, no. 4, pp. 171–181, 2009.
[9]  B. Falini, I. Nicoletti, M. F. Martelli, and C. Mecucci, “Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features,” Blood, vol. 109, no. 3, pp. 874–885, 2007.
[10]  T. Ottone, E. Ammatuna, S. Lavorgna et al., “An allele-specific RT-PCR assay to detect type A mutation of the nucleophosmin-1 gene in acute myeloid leukemia,” Journal of Molecular Diagnostics, vol. 10, no. 3, pp. 212–216, 2008.
[11]  P. Gorello, G. Cazzaniga, F. Alberti et al., “Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations,” Leukemia, vol. 20, no. 6, pp. 1103–1108, 2006.
[12]  S. Schnittger, C. Schoch, W. Kern et al., “Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype,” Blood, vol. 106, no. 12, pp. 3733–3739, 2005.
[13]  D. Dvorakova, Z. Racil, I. Jeziskova et al., “Monitoring of minimal residual disease in acute myeloid leukemia with frequent and rare patient-specific NPM1 mutations,” American Journal of Hematology, vol. 85, no. 12, pp. 926–929, 2010.
[14]  E. Ammatuna, N. I. Noguera, D. Zangrilli et al., “Rapid detection of nucleophosmin (NPM1) mutations in acute myeloid leukemia by denaturing HPLC,” Clinical Chemistry, vol. 51, no. 11, pp. 2165–2167, 2005.
[15]  N. I. Noguera, E. Ammatuna, D. Zangrilli et al., “Simultaneous detection of NPM1 and FLT3-ITD mutations by capillary electrophoresis in acute myeloid leukemia,” Leukemia, vol. 19, no. 8, pp. 1479–1482, 2005.
[16]  C. Thiede, E. Creutzig, T. Illmer et al., “Rapid and sensitive typing of NPM1 mutations using LNA-mediated PCR clamping,” Leukemia, vol. 20, no. 10, pp. 1897–1899, 2006.
[17]  A. Y. Tan, D. A. Westerman, D. A. Carney, J. F. Seymour, S. Juneja, and A. Dobrovic, “Detection of NPM1 exon 12 mutations and FLT3—internal tandem duplications by high resolution melting analysis in normal karyotype acute myeloid leukemia,” Journal of Hematology & Oncology, vol. 1, p. 10, 2008.
[18]  N. Boissel, A. Renneville, V. Biggio et al., “Prevalence, clinical profile, and prognosis of NPM mutations in AML with normal karyotype,” Blood, vol. 106, no. 10, pp. 3618–3620, 2005.
[19]  J. Gabert, E. Beillard, V. H. J. van der Velden et al., “Standardization and quality control studies of “real time” quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer Program,” Leukemia, vol. 17, no. 12, pp. 2318–2357, 2003.
[20]  E. Beillard, N. Pallisgaard, V. H. J. van der Velden et al., “Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using “real-time” quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR)—a Europe against cancer program,” Leukemia, vol. 17, no. 12, pp. 2474–2486, 2003.
[21]  F. H. Barakat, R. Luthra, C. C. Yin et al., “Detection of nucleophosmin 1 mutations by quantitative real-time polymerase chain reaction versus capillary electrophoresis: a comparative study,” Archives of Pathology and Laboratory Medicine, vol. 135, no. 8, pp. 994–1000, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413