全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Lymphoma  2013 

Therapy-Related Late Adverse Events in Hodgkin’s Lymphoma

DOI: 10.1155/2013/952698

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hodgkin's lymphoma (HL) is one of the most curable hematologic diseases with an overall response rate over 80%. However, despite this therapeutic efficacy, HL survivors show a higher morbidity and mortality than other people of the same age because of long-term therapy-related events. In the last decades, many efforts have been made to reduce these effects through the reduction of chemotherapy dose, the use of less toxic chemotherapeutic agents, and the introduction of new radiation techniques. In this paper, we will describe the main long-term effects related to chemotherapy and radiotherapy for HL, the efforts to reduce toxicity made in the last years, and the clinical aspects which have to be taken into consideration in the followup of these patients. 1. Introduction During the last decades, survival of patients (pts) treated for classical Hodgkin’s lymphoma (HL) has improved substantially, getting nowadays to an overall cure rate of 80%–85%, with peaks of more than 90% in early stages. Despite high rates of response, HL survivors have increased morbidity and mortality compared to the general population because of therapy-related side effects. Late complications of treatment are reported since the 70s and include cardiovascular diseases, lung diseases, endocrine abnormalities and secondary malignancies [1, 2]. The aim of this paper is to systematically summarize the available data on long-term events in patients treated for HL. To this aim, we performed a systematic PubMed search (http://www.pubmed.gov/) using the keywords “long-term events,” “Hodgkin’s lymphoma,” and “late toxicity.” All relevant articles were included and were reviewed with reference to cardiovascular and pulmonary diseases, thyroid and fertility dysfunctions, and second cancers related to chemotherapy and radiotherapy. 2. Cardiovascular Diseases In HL pts treated with anthracyclines and/or mediastinal radiotherapy (RT), an increased mortality due to cardiac diseases has been frequently reported [3–5]. Anthracyclines can cause cardiomyopathy, valvular and conduction defects [6]. These clinical manifestations are caused by myocyte loss and interstitial fibrosis leading to decreased left ventricle (LV) contractility, reduced ventricular wall thickness, and progressive LV dilation. Cancer survivors who received anthracycline combined with RT treatment may have an impaired quality of life, develop heart failure, or eventually die for cardiac complications. Earlier studies have demonstrated that the risk of developing clinical heart failure 15 years after anthracycline therapy for

References

[1]  B. M. P. Aleman, A. W. van den Belt-Dusebout, W. J. Klokman, M. B. Van't Veer, H. Bartelink, and F. E. van Leeuwen, “Long-term cause-specific mortality of patients treated for Hodgkin's disease,” Journal of Clinical Oncology, vol. 21, no. 18, pp. 3431–3439, 2003.
[2]  E. Brusamolino, A. Baio, E. Orlandi et al., “Long-term events in adult patients with clinical stage IA-IIA nonbulky Hodgkin's lymphoma treated with four cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine and adjuvant radiotherapy: a single-institution 15-year follow-up,” Clinical Cancer Research, vol. 12, no. 21, pp. 6487–6493, 2006.
[3]  A. K. Ng, “Review of the cardiac long-term effects of therapy for Hodgkin lymphoma,” The British Journal of Haematology, vol. 154, no. 1, pp. 23–31, 2011.
[4]  B. M. P. Aleman, A. W. van den Belt-Dusebout, M. L. de Bruin et al., “Late cardiotoxicity after treatment for Hodgkin lymphoma,” Blood, vol. 109, no. 5, pp. 1878–1886, 2007.
[5]  S. Myrehaug, M. Pintilie, R. Tsang et al., “Cardiac morbidity following modern treatment for Hodgkin lymphoma: supra-additive cardiotoxicity of doxorubicin and radiation therapy,” Leukemia and Lymphoma, vol. 49, no. 8, pp. 1486–1493, 2008.
[6]  O. Hequet, Q. H. Le, I. Moullet et al., “Subclinical late cardiomyopathy after doxorubicin therapy for lymphoma in adults,” Journal of Clinical Oncology, vol. 22, no. 10, pp. 1864–1871, 2004.
[7]  L. C. M. Kremer, E. C. van Dalen, M. Offringa, and P. A. Vo?te, “Frequency and risk factors of anthracycline-induced clinical heart failure in children: a systematic review,” Annals of Oncology, vol. 13, no. 4, pp. 503–512, 2002.
[8]  A. J. Swerdlow, C. D. Higgins, P. Smith et al., “Myocardial infarction mortality risk after treatment for hodgkin disease: a collaborative British cohort study,” Journal of the National Cancer Institute, vol. 99, no. 3, pp. 206–214, 2007.
[9]  H. R. Tsai, O. Gjesdal, T. Wethal et al., “Left ventricular function assessed by two-dimensional speckle tracking echocardiography in long-term survivors of hodgkin's lymphoma treated by mediastinal radiotherapy with or without anthracycline therapy,” The American Journal of Cardiology, vol. 107, no. 3, pp. 472–477, 2011.
[10]  D. C. Weber, N. Peguret, G. Dipasquale, and L. Cozzi, “Involved-node and involved-field volumetric modulated arc versus fixed beam intensity-modulated radiotherapy for female patients with early-stage supra-diaphragmatic Hodgkin lymphoma: a comparative planning study,” International Journal of Radiation Oncology Biology Physics, vol. 75, no. 5, pp. 1578–1586, 2009.
[11]  A. Engert, A. Plutschow, H. T. Eich, et al., “Reduced treatment intensity in patients with early-stage Hodgkin's lymphoma,” The New England Journal of Medicine, vol. 363, no. 7, pp. 640–652, 2010.
[12]  C. Glanzmann, P. Kaufmann, R. Jenni, O. M. Hess, and P. Huguenin, “Cardiac risk after mediastinal irradiation for Hodgkin's disease,” Radiotherapy and Oncology, vol. 46, no. 1, pp. 51–62, 1998.
[13]  M. C. Hull, C. G. Morris, C. J. Pepine, and N. P. Mendenhall, “Valvular dysfunction and carotid, subclavian, and coronary artery disease in survivors of Hodgkin lymphoma treated with radiation therapy,” Journal of the American Medical Association, vol. 290, no. 21, pp. 2831–2837, 2003.
[14]  V. King, L. S. Constine, D. Clark et al., “Symptomatic coronary artery disease after mantle irradiation for Hodgkin's disease,” International Journal of Radiation Oncology Biology Physics, vol. 36, no. 4, pp. 881–889, 1996.
[15]  A. Hirsch, N. Vander Els, D. J. Straus et al., “Effect of ABVD chemotherapy with and without mantle or mediastinal irradiation on pulmonary function and symptoms in early-stage Hodgkin's disease,” Journal of Clinical Oncology, vol. 14, no. 4, pp. 1297–1305, 1996.
[16]  F. Villani, P. de Maria, V. Bonfante et al., “Late pulmonary toxicity after treatment for Hodgkin's disease,” Anticancer Research, vol. 17, no. 6D, pp. 4739–4742, 1997.
[17]  H. D. Sostman, R. A. Matthay, and C. E. Putman, “Cytotoxic drug induced lung disease,” The American Journal of Medicine, vol. 62, no. 4, pp. 608–615, 1977.
[18]  E. Azambuja, J. F. Fleck, R. G. Batista, and S. S. Menna Barreto, “Bleomycin lung toxicity: who are the patients with increased risk?” Pulmonary Pharmacology and Therapeutics, vol. 18, no. 5, pp. 363–366, 2005.
[19]  FDA Drug Safety Communication, New Boxed Warning and Contraindication for Adcetris (brentuximab vedotin).
[20]  A. M. Evens, I. Helenowski, E. Ramsdale, :, et al., “A retrospective multicenter analysis of elderly Hodgkin lymphoma: outcomes and prognostic factors in the modern era,” Blood, vol. 119, no. 3, pp. 692–695, 2012.
[21]  E. Azoulay, S. Herigault, M. Levame et al., “Effect of granulocyte colony-stimulating factor on bleomycin-induced acute lung injury and pulmonary fibrosis,” Critical Care Medicine, vol. 31, no. 5, pp. 1442–1448, 2003.
[22]  W. G. Martin, K. M. Ristow, T. M. Habermann, J. P. Colgan, T. E. Witzig, and S. M. Ansell, “Bleomycin pulmonary toxicity has a negative impact on the outcome of patients with Hodgkin's lymphoma,” Journal of Clinical Oncology, vol. 23, no. 30, pp. 7614–7620, 2005.
[23]  H. Bredenfeld, J. Franklin, L. Nogova et al., “Severe pulmonary toxicity in patients with advanced-stage hodgkin's disease treated with a modified bleomycin, doxorubicin, cyclophosphamide, vincristine, procarbazine, prednisone, and gemcitabine (BEACOPP) regimen is probably related to the combination of gemcitabine and bleomycin: a report of the German Hodgkin's lymphoma study group,” Journal of Clinical Oncology, vol. 22, no. 12, pp. 2424–2429, 2004.
[24]  A. Younes, J. M. Connors, S. I. Park, et al., “Frontline therapy with brentuximab vedotin combined with ABVD or AVD in patients with newly diagnosed advanced stage Hodgkin lymphoma,” ASH Annual Meeting Abstracts, vol. 118, article 955, 2011.
[25]  S. L. Hancock, R. S. Cox, and I. R. McDougall, “Thyroid diseases after treatment of Hodgkin's disease,” The New England Journal of Medicine, vol. 325, no. 9, pp. 599–605, 1991.
[26]  L. S. Constine, S. S. Donaldson, and I. R. McDougall, “Thyroid dysfunction after radiotherapy in children with Hodgkin's disease,” Cancer, vol. 53, no. 4, pp. 878–883, 1984.
[27]  C. Sklar, J. Whitton, A. Mertens et al., “Abnormalities of the thyroid in survivors of Hodgkin's disease: data from the childhood cancer survivor study,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 9, pp. 3227–3232, 2000.
[28]  S. Bhatia, N. K. C. Ramsay, J. P. Bantle, A. Mertens, and L. L. Robison, “Thyroid abnormalities after therapy for hodgkin's disease in childhood,” Oncologist, vol. 1, no. 1-2, pp. 62–67, 1996.
[29]  B. A. Jereczek-Fossa, D. Alterio, J. Jassem, B. Gibelli, N. Tradati, and R. Orecchia, “Radiotherapy-induced thyroid disorders,” Cancer Treatment Reviews, vol. 30, no. 4, pp. 369–384, 2004.
[30]  I. Solt, D. Gaitini, M. Pery, et al., “Comparing thyroid ultrasonography to thyroid function in long-term survivors of childhood lymphoma,” Medical and Pediatric Oncology, vol. 35, no. 1, pp. 35–40, 2000.
[31]  M. L. Metzger, S. C. Howard, M. M. Hudson et al., “Natural history of thyroid nodules in survivors of pediatric Hodgkin lymphoma,” Pediatric Blood and Cancer, vol. 46, no. 3, pp. 314–319, 2006.
[32]  M. A. E. van der Kaaij, N. Heutte, N. le Stang et al., “Gonadal function in males after chemotherapy for early-stage Hodgkin's lymphoma treated in four subsequent trials by the European Organisation for Research and Treatment of Cancer: EORTC lymphoma group and the groupe d'étude des lymphomes de l'adulte,” Journal of Clinical Oncology, vol. 25, no. 19, pp. 2825–2832, 2007.
[33]  M. A. E. van der Kaaij, N. Heutte, J. van Echten-Arends et al., “Sperm quality before treatment in patients with early stage Hodgkin's lymphoma enrolled in EORTC-GELA lymphoma group trials,” Haematologica, vol. 94, no. 12, pp. 1691–1697, 2009.
[34]  U. Rueffer, K. Breuer, A. Josting et al., “Male gonadal dysfunction in patients with Hodgkin's disease prior to treatment,” Annals of Oncology, vol. 12, no. 9, pp. 1307–1311, 2001.
[35]  M. Schrader, M. Müller, N. Sofikitis, C. Goessl, B. Straub, and K. Miller, “Testicular sperm extraction prior to treatment in azoospermic patients with Hodgkin's disease,” Annals of Oncology, vol. 13, no. 2, p. 333, 2002.
[36]  D. Meirow and D. Nugent, “The effects of radiotherapy and chemotherapy on female reproduction,” Human Reproduction Update, vol. 7, no. 6, pp. 535–543, 2001.
[37]  C. Bokemeyer, H. J. Schmoll, J. van Rhee, M. Kuczyk, F. Schuppert, and H. Poliwoda, “Long-term gonadal toxicity after therapy for Hodgkin's and non-Hodgkin's lymphoma,” Annals of Hematology, vol. 68, no. 3, pp. 105–110, 1994.
[38]  R. D. van Beek, M. M. van den Heuvel-Eibrink, J. S. E. Laven et al., “Anti-Müllerian hormone is a sensitive serum marker for gonadal function in women treated for Hodgkin's lymphoma during childhood,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 10, pp. 3869–3874, 2007.
[39]  F. J. Broekmans, M. J. Faddy, G. Scheffer, and E. R. Te Velde, “Antral follicle counts are related to age at natural fertility loss and age at menopause,” Menopause, vol. 11, no. 6, Part 1 of 2, pp. 607–614, 2004.
[40]  S. Harel, C. Fermé, and C. Poirot, “Management of fertility in patients treated for Hodgkin's lymphoma,” Haematologica, vol. 96, no. 11, pp. 1692–1699, 2011.
[41]  K. Behringer, K. Breuer, T. Reineke et al., “Secondary amenorrhea after Hodgkin's lymphoma is influenced by age at treatment, stage of disease, chemotherapy regimen, and the use of oral contraceptives during therapy: a report from the German Hodgkin's lymphoma study group,” Journal of Clinical Oncology, vol. 23, no. 30, pp. 7555–7564, 2005.
[42]  S. Viviani, A. Santoro, and G. Ragni, “Gonadal toxicity after combination chemotherapy for Hodgkin's disease. Comparative results of MOPP vs ABVD,” The European Journal of Cancer and Clinical Oncology, vol. 21, no. 5, pp. 601–605, 1985.
[43]  K. Behringer, L. Wildt, H. Mueller et al., “No protection of the ovarian follicle pool with the use of GnRH-analogues or oral contraceptives in young women treated with escalated BEACOPP for advanced-stage Hodgkin lymphoma. Final results of a phase II trial from the German Hodgkin Study Group,” Annals of Oncology, vol. 21, no. 10, pp. 2052–2060, 2010.
[44]  M. A. van der Kaaij, N. Heutte, P. Meijnders, et al., “Premature ovarian failure and fertility in long-term survivors of Hodgkin's lymphoma: a European Organisation for Research and Treatment of Cancer Lymphoma Group and Groupe d'Etude des Lymphomes de l'Adulte Cohort Study,” Journal of Clinical Oncology, vol. 30, no. 3, pp. 291–299, 2012.
[45]  K. Behringer, I. Thielen, H. Mueller, et al., “Fertility and gonadal function in female survivors after treatment of early unfavorable Hodgkin lymphoma (HL) within the German Hodgkin Study Group HD14 trial,” Annals of Oncology, vol. 23, no. 7, pp. 1818–1825, 2012.
[46]  J. R. Redman, D. R. Bajorunas, G. Wong et al., “Bone mineralization in women following successful treatment of Hodgkin's disease,” The American Journal of Medicine, vol. 85, no. 1, pp. 65–72, 1988.
[47]  C. A. Thompson, K. Mauck, R. Havyer, et al., “Care of the adult Hodgkin lymphoma survivor,” The American Journal of Medicine, vol. 124, no. 12, pp. 1106–1112, 2011.
[48]  S. Bhatia, L. L. Robison, O. Oberlin et al., “Breast cancer and other second neoplasms after childhood Hodgkin's disease,” The New England Journal of Medicine, vol. 334, no. 12, pp. 745–751, 1996.
[49]  A. T. Meadows, D. L. Friedman, J. P. Neglia et al., “Second neoplasms in survivors of childhood cancer: findings from the childhood cancer survivor study cohort,” Journal of Clinical Oncology, vol. 27, no. 14, pp. 2356–2362, 2009.
[50]  A. C. MacArthur, J. J. Spinelli, P. C. Rogers, K. J. Goddard, N. Phillips, and M. L. McBride, “Risk of a second malignant neoplasm among 5-year survivors of cancer in childhood and adolescence in British Columbia, Canada,” Pediatric Blood and Cancer, vol. 48, no. 4, pp. 453–459, 2007.
[51]  A. J. Swerdlow, A. J. Douglas, G. V. Hudson, M. H. Bennett, and K. A. MacLennan, “Risk of second primary cancers after Hodgkin's disease by type of treatment: analysis of 2846 patients in the British national lymphoma investigation,” The British Medical Journal, vol. 304, no. 6835, pp. 1137–1143, 1992.
[52]  D. H. Christiansen, M. K. Andersen, and J. Pedersen-Bjergaard, “Mutations of AML1 are common in therapy-related myelodysplasia following therapy with alkylating agents and are significantly associated with deletion or loss of chromosome arm 7q and with subsequent leukemic transformation,” Blood, vol. 104, no. 5, pp. 1474–1481, 2004.
[53]  D. T. Bowen, M. E. Frew, R. Hills et al., “RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years,” Blood, vol. 106, no. 6, pp. 2113–2119, 2005.
[54]  E. Brusamolino, M. Gotti, and V. Fiaccadori, “The risk of therapy-related myelodysplasia/acute myeloid leukemia in Hodgkin lymphoma has substantially decreased in the ABVD era abolishing mechlorethamine and procarbazine and limiting volumes and doses of radiotherapy,” Mediterranean Journal of Hematology and Infectious Diseases, vol. 4, no. 1, Article ID e2012022, 2012.
[55]  D. L. Preston, E. Ron, S. Tokuoka et al., “Solid cancer incidence in atomic bomb survivors: 1958–1998,” Radiation Research, vol. 168, no. 1, pp. 1–64, 2007.
[56]  P. M. Barbaro, K. Johnston, L. Dalla-Pozza, et al., “Reduced incidence of second solid tumors in survivors of childhood Hodgkin's lymphoma treated without radiation therapy,” Annals of Oncology, vol. 22, no. 12, pp. 2569–2574, 2011.
[57]  A. J. Swerdlow, C. D. Higgins, P. Smith, et al., “Second cancer risk after chemotherapy for Hodgkin's lymphoma: a collaborative British cohort study,” Journal of Clinical Oncology, vol. 29, no. 31, pp. 4096–4104, 2011.
[58]  G. M. Dores, C. Metayer, R. E. Curtis et al., “Second malignant neoplasms among long-term survivors of Hodgkin's disease: a population-based evaluation over 25 years,” Journal of Clinical Oncology, vol. 20, no. 16, pp. 3484–3494, 2002.
[59]  D. C. Hodgson, E. S. Gilbert, G. M. Dores et al., “Long-term solid cancer risk among 5-year survivors of Hodgkin's lymphoma,” Journal of Clinical Oncology, vol. 25, no. 12, pp. 1489–1497, 2007.
[60]  A. Horwich and A. J. Swerdlow, “Second primary breast cancer after Hodgkin's disease,” The British Journal of Cancer, vol. 90, no. 2, pp. 294–298, 2004.
[61]  D. C. Hodgson, E.-S. Koh, T. H. Tran et al., “Individualized estimates of second cancer risks after contemporary radiation therapy for Hodgkin lymphoma,” Cancer, vol. 110, no. 11, pp. 2576–2586, 2007.
[62]  S. L. Hancock, M. A. Tucker, and R. T. Hoppe, “Breast cancer after treatment of Hodgkin's disease,” Journal of the National Cancer Institute, vol. 85, no. 1, pp. 25–31, 1993.
[63]  M. L. de Bruin, J. Sparidans, M. B. Van't Veer et al., “Breast cancer risk in female survivors of Hodgkin's lymphoma: lower risk after smaller radiation volumes,” Journal of Clinical Oncology, vol. 27, no. 26, pp. 4239–4246, 2009.
[64]  L. B. Travis, D. A. Hill, G. M. Dores et al., “Breast cancer following radiotherapy and chemotherapy among young women with Hodgkin disease,” Journal of the American Medical Association, vol. 290, no. 4, pp. 465–475, 2003.
[65]  F. E. van Leeuwen, W. J. Klokman, M. Stovall et al., “Roles of radiation dose, chemotherapy, and hormonal factors in breast cancer following Hodgkin's disease,” Journal of the National Cancer Institute, vol. 95, no. 13, pp. 971–980, 2003.
[66]  E. B. Elkin, M. L. Klem, A. M. Gonzales et al., “Characteristics and outcomes of breast cancer in women with and without a history of radiation for Hodgkin's lymphoma: a multi-institutional, matched cohort study,” Journal of Clinical Oncology, vol. 29, no. 18, pp. 2466–2473, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133