全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Study on Course of Infection and Haematological Changes in falciparum-Infected in Comparison with Artemisinin(s)-Treated Mice

DOI: 10.1155/2013/426040

Full-Text   Cite this paper   Add to My Lib

Abstract:

To find out the efficacy and effect of artemisinin derivatives on haematological indices, C57BL/6J mice were challenged with Plasmodium falciparum and treated with therapeutic doses of AS, AE, and AL. Course of infection was studied in the infected and treated groups up to day 42. Peak level of parasitaemia (38%) was observed on day 11 in infected group. Haematological indices indicated significant ( ) decrease in RBC, WBC, haemoglobin, packed cell volume, mean cell volume, and platelet counts in infected mice. But all the parameters were restored to normal values, and significant ( ) changes were observed in all drug-treated groups. Insignificant changes were observed for MCHC ( ) in all drug-treated groups. Percent of peak parasitaemia was much reduced in AL- (3.2% on day 3) treated group in comparison with AE- (2.4% on day 4) and AS- (4% on day 2) treated groups. Parasites were completely cleared on day 6 in AS group, day 5 in AE group, and day 4 in AL group. Hence, our results strongly support that combination therapy has high efficacy rates than monotherapy. No adverse effects were observed on haematological parameters when animals were treated with therapeutic dosages. 1. Introduction Despite advances in knowledge, malaria continues to cause significant morbidity and mortality worldwide. Over 40% of the world population lives in malaria-endemic areas and it is very high (20%) in severe malaria (parasitaemia > 5%). Today malaria is the most important problem for which an estimated 300–500 million cases were recorded and 1.5–2.7 million deaths occur each year [1]. Among them 19,500 death cases due to malaria have been recorded in India [2]. Mortality rate usually depends on the management of malaria which involves antimalarial drug resistance of Plasmodium falciparum and occurrence of systemic complications. Most of the systemic complications from malaria are mainly because of hyperparasitaemia [3]. Blood is the most easily accessible diagnostic tissue. Variations in haematological parameters are influenced by any disease condition which affects the haemopoietic physiology. This is likely to happen with an endemic disease such as malaria that affects the host homeostasis [4]. The target of malaria parasite is RBC so that peripheral blood smear examination is the major diagnostic tool of the disease. Microscopic diagnosis is the “imperfect gold standard’’ for malaria parasite detection and species identification. This technique requires technical expertise and time consuming in repeated smear examinations [5]. However, it is a valuable technique when

References

[1]  A. H. Abro, A. M. Ustadi, N. J. Younis, A. S. Abdou, D. Al Hamed, and A. A. Saleh, “Malaria and hematological changes,” Pakistan Journal of Medical Sciences, vol. 24, no. 2, pp. 287–291, 2008.
[2]  V. P. Sharma, “Roll back of malaria,” Current Science, vol. 75, no. 8, pp. 756–757, 1998.
[3]  K. Taha, S. Zein El-Dein, and M. Idrees, “Haematological changes in malaria: relation to Plasmodium species,” Kuwait Medical Journal, vol. 39, no. 3, pp. 262–267, 2007.
[4]  R. N. Maina, D. Walsh, C. Gaddy et al., “Impact of Plasmodium falciparum infection on haematological parameters in children living in Western Kenya,” Malaria Journal, vol. 9, no. 3, supplement, article S4, 2010.
[5]  “World Health Organization, New perspective, malaria diagnosis,” Geneva, Switzerland, 2000.
[6]  T. B. Lathia and R. Joshi, “Can hematological parameters discriminate malaria from nonmalarious acute febrile illness in the tropics?” Indian Journal of Medical Sciences, vol. 58, no. 6, pp. 239–244, 2004.
[7]  P. C. Wever, Y. M. C. Henskens, P. A. Kager, J. Dankert, and T. Van Gool, “Detection of imported malaria with the Cell-Dyn 4000 hematology analyzer,” Journal of Clinical Microbiology, vol. 40, no. 12, pp. 4729–4731, 2002.
[8]  R. N. Price, J. A. Simpson, F. Nosten et al., “Factors contributing to anemia after uncomplicated falciparum malaria,” American Journal of Tropical Medicine and Hygiene, vol. 65, no. 5, pp. 614–622, 2001.
[9]  C. A. Facer, “Haematological aspect of malaria,” in Infection and Haematology, pp. 259–294, Oxford Butterworth Heineman Limited, 1994.
[10]  G. S. Murphy and E. C. Oldfield, “Falciparum malaria,” Infectious Disease Clinics of North America, vol. 10, no. 4, pp. 747–775, 1996.
[11]  J. H. Jandle, “Hemolytic anaemias caused by infection of red blood cells,” in Blood, pp. 473–501, Little brown company, New York, NY, USA, 2nd edition, 1996.
[12]  M. A. Van Agtmael, S. Cheng-Qi, J. X. Qing, R. Mull, and C. J. Van Boxtel, “Multiple dose pharmacokinetics of artemether in Chinese patients with uncomplicated falciparum malaria,” International Journal of Antimicrobial Agents, vol. 12, no. 2, pp. 151–158, 1999.
[13]  G. P. Dutta and R. Tripathi, “New antimalarial drug development in India: arteether α, β-a blood schizontocide,” Proceedings of the Indian National Science Academy, vol. 69, no. 6, pp. 861–870, 2003.
[14]  Guide for the Care and Use of Laboratory Animals, Institute of Laboratory Animal Resources Commission on Life Sciences, National Research Council, Washington, DC, USA, 1996.
[15]  L. H. Perrin, L. J. Mackey, and P. A. Miescher, “The hematology of malaria in man,” Seminars in Hematology, vol. 19, no. 2, pp. 70–82, 1982.
[16]  A. M. Dondorp, B. J. Angus, K. Chotivanich et al., “Red blood cell deformability as a predictor of anemia in severe falciparum malaria,” American Journal of Tropical Medicine and Hygiene, vol. 60, no. 5, pp. 733–737, 1999.
[17]  H. Ekvall, “Malaria and anemia,” Current Opinion in Hematology, vol. 10, no. 2, pp. 108–114, 2003.
[18]  A. M. Dondorp, F. Nosten, P. Yi et al., “Artemisinin resistance in Plasmodium falciparum malaria,” New England Journal of Medicine, vol. 361, no. 5, pp. 455–467, 2009.
[19]  G. Inocent, N. Djuidje Marceline, M. J. Pankoui Bertrand, and K. Fotso Honore, “Iron status of malaria patients in Douala-Cameron,” Pakistan Journal of Nutrition, vol. 7, no. 5, pp. 620–624, 2008.
[20]  S. H. Abdalla, “Peripheral blood and bone marrow leucocytes in Gambian children with malaria: numerical changes and evaluation of phagocytosis,” Annals of Tropical Paediatrics, vol. 8, no. 4, pp. 250–258, 1988.
[21]  O. K. Amodu, A. A. Adeyemo, P. E. Olumese, and R. A. Gbadegesin, “Intraleucocytic malaria pigment and clinical severity of malaria in children,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 92, no. 1, pp. 54–56, 1998.
[22]  J. S. Aprioku and A. W. Obianime, “Biochemical, haematological and reproductive indices in some biochemical systems,” Insight Pharmaceutical Sciences, vol. 1, no. 1, pp. 1–10, 2011.
[23]  C. Maiteki-Sebuguzi, P. Jagannathan, V. M. Yau et al., “Safety and tolerability of combination antimalarial therapies for uncomplicated falciparum malaria in Ugandan children,” Malaria Journal, vol. 7, article 106, 2008.
[24]  M. Ho, T. Schollaardt, S. Snape, S. Looareesuwan, P. Suntharasamai, and N. J. White, “Endogenous interleukin-10 modulates proinflammatory response in Plasmodium falciparum malaria,” Journal of Infectious Diseases, vol. 178, no. 2, pp. 520–525, 1998.
[25]  N. P. J. Day, T. T. Hien, T. Schollaardt et al., “The prognostic and pathophysiologic role of pro- and antiinflammatory cytokines in severe malaria,” Journal of Infectious Diseases, vol. 180, no. 4, pp. 1288–1297, 1999.
[26]  G. Biemba, V. R. Gordeuk, P. Thuma, and G. Weiss, “Markers of inflammation in children with severe malarial anaemia,” Tropical Medicine and International Health, vol. 5, no. 4, pp. 256–262, 2000.
[27]  M. N. Akhtar, S. Jamil, S. I. Amjad, A. R. Butt, and M. Farooq, “Association of malaria with thrombocytopenia,” Annals of King Edward Medical College, vol. 11, pp. 536–537, 2005.
[28]  Z. U. Rehman, M. Alam, A. Mahmood, A. Mubarik, A. Sattar, and K. A. Karamat, “Thrombocytopenia in acute malarial infection,” Pakistan Journal of Pathology, vol. 10, pp. 9–11, 1999.
[29]  E. M. Essien and M. I. Ebhota, “Platelet hypersensitivity in acute malaria (Plasmodium falciparum) infection in man,” Thrombosis and Haemostasis, vol. 46, no. 2, pp. 547–549, 1981.
[30]  R. D. Horstmann, M. Dietrich, U. Bienzle, and H. Rasche, “Malaria-induced thrombocytopenia,” Blut, vol. 42, no. 3, pp. 157–164, 1981.
[31]  D. Mohanty, K. Ghosh, S. K. Nandwani et al., “Fibrinolysis, inhibitors of blood coagulation, and monocyte derived coagulant activity in acute malaria,” American Journal of Hematology, vol. 54, no. 1, pp. 23–29, 1997.
[32]  P. L. Olliaro and W. R. J. Taylor, “Developing artemisinin based drug combinations for the treatment of drug resistant falciparum malaria: a review,” Journal of Postgraduate Medicine, vol. 50, no. 1, pp. 40–44, 2004.
[33]  M. Adjuik, P. Babiker, P. Garner, P. Olliaro, W. Taylor, and N. White, “Artesunate combinations for treatment of malaria: meta-analysis,” Lancet, vol. 363, no. 9402, pp. 9–17, 2004.
[34]  F. Nosten and N. J. White, “Artemisinin-based combination treatment of falciparum malaria,” The American Journal of Tropical Medicine and Hygiene, vol. 77, no. 6, pp. 181–192, 2007.
[35]  N. J. White, “Assessment of the pharmacodynamic properties of antimalarial drugs in vivo,” Antimicrobial Agents and Chemotherapy, vol. 41, no. 7, pp. 1413–1422, 1997.
[36]  D. Bunnag, C. Viravan, S. Looareesuwan, J. Karbwang, and T. Harinasuta, “Double blind randomised clinical trial of oral artesunate at once or twice daily dose in falciparum malaria,” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 22, no. 4, pp. 539–543, 1991.
[37]  C. Luxemburger, F. O. Ter Kulle, F. Nosten et al., “Single day mefloquin-artesunate combination in the treatment of multi-drug resistant falciparum malaria,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 88, no. 2, pp. 213–217, 1994.
[38]  O. P. Asthana, J. S. Srivastava, V. P. Kamboj et al., “A multicentric study with arteether in patients of uncomplicated Plasmodium falciparum malaria,” Journal of Association of Physicians of India, vol. 49, pp. 692–696, 2001.
[39]  N. Sethi, R. Srivastava, R. K. Singh, and P. S. R. Murthy, “Systamic toxicity study of a new schizontocidal antimalarial drug arteether in rats and monkeys,” Indian Journal of Parasitology, vol. 12, no. 2, pp. 223–235, 1998.
[40]  WHO, “Susceptibility of Plasmodium falciparum to antimalarial drugs. Report on global monitoring 1996–2004,” WHO, Geneva, Switzerland, 2005.
[41]  C. Falade, M. Makanga, Z. Premji, C.-E. Ortmann, M. Stockmeyer, and P. Ibarra de Palacios, “Efficacy and safety of artemether-lumefantrine (Coartem) tablets (six-dose regimen) in African infants and children with acute, uncomplicated falciparum malaria,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 99, no. 6, pp. 459–467, 2005.
[42]  J.-P. Guthmann, J. Ampuero, F. Fortes et al., “Antimalarial efficacy of chloroquine, amodiaquine, sulfadoxine-pyrimethamine, and the combinations of amodiaquine + artesunate and sulfadoxine-pyrimethamine + artesunate in Huambo and Bié provinces, central Angola,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 99, no. 7, pp. 485–492, 2005.
[43]  P. Piola, C. Fogg, F. Bajunirwe et al., “Supervised versus unsupervised intake of six-dose artemether-lumefantrine for treatment of acute, uncomplicated Plasmodium falciparum malaria in Mbarara, Uganda: a randomised trial,” Lancet, vol. 365, no. 9469, pp. 1467–1473, 2005.
[44]  WHO, Guidelines for the Treatment of Malaria, World Health Organization, Geneva, Switzerland, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413