全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Malariometric Indices among Nigerian Children in a Rural Setting

DOI: 10.1155/2013/716805

Full-Text   Cite this paper   Add to My Lib

Abstract:

Malaria contributes to high childhood morbidity and mortality in Nigeria. To determine its endemicity in a rural farming community in the south-south of Nigeria, the following malariometric indices, namely, malaria parasitaemia, spleen rates, and anaemia were evaluated in children aged 2–10 years. This was a descriptive cross-sectional survey among school-age children residing in a rubber plantation settlement. The children were selected from six primary schools using a multistaged stratified cluster sampling technique. They were all examined for pallor, enlarged spleen, or liver among other clinical parameters and had blood films for malaria parasites. Of the 461 children recruited, 329 (71.4%) had malaria parasites. The prevalence of malaria parasitaemia was slightly higher in the under fives than that of those ≥5 years, 76.2% and 70.3%, respectively. Splenic enlargement was present in 133 children (28.9%). The overall prevalence of anaemia was 35.7%. Anaemia was more common in the under-fives (48.8%) than in those ≥5 years (32.8%). The odds of anaemia in the under fives were significantly higher than the odds of those ≥5 years ( [1.19–3.18]). Malaria is highly endemic in this farming community and calls for intensification of control interventions in the area with special attention to school-age children. 1. Introduction Malaria remains a leading cause of illness and death in sub-Saharan Africa with the greatest risk seen in children under the age of five, pregnant women, and people living with HIV/AIDS [1, 2]. About 50% of Nigerians are estimated to have at least one episode of the disease each year with over 200,000 deaths in children annually [3]. Estimates of malaria burden are based on malariometric indices like prevalence of malaria parasitaemia, spleen rate, and anaemia in defined risk groups [2]. School-age children are vulnerable to the disease and have been studied over the years to determine malaria burden at community levels using these malariometric indices [4]. An understanding of the malaria burden in a given setting is important for health planning, policy development, and control interventions. This study aimed at determining the malaria burden at Ikot-Omin, a rural rubber plantation settlement, using malaria parasitaemia, spleen rate and anaemia as malariometric indices. 2. Methods As part of site preparation for the setting up of a sentinel site for monitoring antimalarial efficacy and drug resistance [5], we conducted a cross-sectional study in Ikot-Omin; a suburb of Calabar in Cross River state, Southern Nigeria. The area is a

References

[1]  E. Samba, “Malaria and control efforts in Africa,” WHO Newsletter, pp. 9–15, 2000.
[2]  World Health Organization, World Malaria Report 2005, WHO, Geneva, Switzerland, 2005.
[3]  B. M. Afolabi, E. N. U. Ezedinachi, and B. S. Fatumbi, “Roll back malaria: the story so far,” WHO Newsletter, vol. 16, pp. 6–7, 2001.
[4]  B. Maegraith, “Malaria,” in Adams & Maegraith Clinical Tropical Diseases, B. Maegraith, Ed., pp. 234–281, Blackwell, Oxford, UK, 6th edition, 1976.
[5]  World Health Organization, Assessment and Monitoring of AntiMalarial Drug Efficacy for the Treatment of Uncomplicated Falciparum Malaria, WHO, Geneva, Switzerland, 2003.
[6]  A. A. Alaribe, G. C. Ejezie, and E. N. U. Ezedinachi, “Studies on mosquito distribution in Ekemkpon village Cross River State of Nigeria,” Journal of Medical Laboratory Sciences, vol. 2, pp. 45–51, 2002.
[7]  E. N. U. Ezedinachi, A. A. A. Alaribe, M. Meremikwu, and G. C. Ejezie, “New trends in chloroquine efficacy in the treatment of malaria: significance of low (scanty) parasitaemia in an endemic area, with emerging chloroquine-resistant P. falciparum,” Central African Journal of Medicine, vol. 38, no. 7, pp. 303–307, 1992.
[8]  A. A. Alaribe, Dynamics of malaria transmission in Ekemkpon village in Odukpani local government area of Cross River State [Ph.D. thesis], Graduate School, University of Calabar, Calabar, Nigeria, 1999.
[9]  J. C. Yang, L. S. Rickman, and S. K. Bosser, “The clinical diagnosis of splenomegaly,” Western Journal of Medicine, vol. 155, no. 1, pp. 47–52, 1991.
[10]  H. L. Kamga, S. A. Akuro, and A. L. Njunda, “Relationship between blood cell counts and the density of malaria parasites among patients at the regional hospital, Limbe, Cameroun,” African Journal of Clinical and Experimental Microbiobiology, vol. 11, no. 2, pp. 120–137, 2010.
[11]  Federal Ministry of Health, National Antimalarial Treatment Policy Abuja, Federal Ministry of Health, 2005.
[12]  Epi infoTM, Centers for Disease Control and Prevention, Atlanta, Ga, USA.
[13]  H. M. Gilles, “Immunology of Malaria,” in Bruce-Chwatt's Essential Malariology, H. M. Gilles and D. A. Warrell, Eds., pp. 85–103, Edward Arnold, London, UK, 1993.
[14]  T. Chongsuphajaisiddhi, “Malaria,” in Diseases in Children in the Sub-Tropics and Tropics, S. Paget, B. Martin, C. Michael, and W. Tony, Eds., pp. 657–674, Edward Arnold, London, UK, 4th edition, 1991.
[15]  S. K. Sharma, R. Chattopadhyay, K. Chakrabarti et al., “Epidemiology of malaria transmission and development of natural immunity in a malaria-endemic village, San Dulakudar, in Orissa state, India,” The American Journal of Tropical Medicine and Hygiene, vol. 71, no. 4, pp. 457–465, 2004.
[16]  S. J. Wang, C. Lengeler, T. A. Smith et al., “Rapid urban malaria appraisal (RUMA) in sub-Saharan Africa,” Malaria Journal, vol. 4, article 40, 2005.
[17]  National Population Commission (NPC) [Nigeria], National Malaria Control Programme (NMCP) [Nigeria], and ICF International, Nigeria Malaria Indicator Survey 2010: Final Report, National Population Commission, National Malaria Control Programme, ICF International, 2012.
[18]  A. A. Adeyemo, P. E. Olumese, O. K. Amodu, and R. A. Gbadegesin, “Correlates of hepatomegaly and splenomegaly among Healthy school children in a malaria endemic village,” Nigerian Journal of Paediatrics, vol. 26, pp. 1–3, 1999.
[19]  G. Barnish, G. H. Maude, M. J. Bockarie, O. A. Erunkulu, M. S. Dumbuya, and B. M. Greenwood, “Malaria in a rural area of Sierra Leone. II. Parasitological and related results from pre- and post-rains clinical surveys,” Annals of Tropical Medicine and Parasitology, vol. 87, no. 2, pp. 137–148, 1993.
[20]  N. Singh, A. K. Mishra, M. M. Shukla, and S. K. Chand, “Forest malaria in Chhindwara, Madhya Pradesh, central India: a case study in a tribal community,” The American Journal of Tropical Medicine and Hygiene, vol. 68, no. 5, pp. 602–607, 2003.
[21]  E. Klinkenberg, P. J. McCall, M. D. Wilson et al., “Urban malaria and anaemia in children: a cross-sectional survey in two cities of Ghana,” Tropical Medicine and International Health, vol. 11, no. 5, pp. 578–588, 2006.
[22]  S. Sharda, K. Kanta, and U. Maijule, “Prevalence of anaemia in Bazigar (Ex-nomadic Tribe) preschool children in Punjab,” Journal of Human Ecology, vol. 21, pp. 265–267, 2007.
[23]  S. P. Mato, “Anemia and malaria in a Yanomami Amerindian population from the Southern Venezuelan Amazon,” The American Journal of Tropical Medicine and Hygiene, vol. 59, no. 6, pp. 998–1001, 1998.
[24]  J. French and B. M. Camitta, “Splenomegaly,” in Nelson Text Book of Paediatrics, R. E. Behrman, R. M. Kliegman, and H. B. Jenson, Eds., pp. 1675–1676, WB Saunders, Philadelphia, Pa, USA, 17th edition, 2004.
[25]  D. J. Bradley, C. I. Newbold, and D. A. Warrell, “Malaria,” in Textbook of Medicine, D. J. Weatherall, J. G. G. Ledingham, and D. A. Warrell, Eds., pp. 5.474–5.502, Oxford University Press, Oxford, UK, 2nd edition, 1987.
[26]  K. Olayemi, A. T. Ande, A. V. Ayanwale et al., “Seasonal trends in epidemiological and entomological profiles of malaria transmission in North Central Nigeria,” Pakistan Journal of Biological Sciences, vol. 14, no. 4, pp. 293–299, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413