全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Agaciro Equation via the Scope of Green Function

DOI: 10.1155/2014/201796

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have undertaken an investigation of a kind of third-order equation called Agaciro equation within the folder of both integer and fractional order derivative. In the way of deriving the general exact solution of this equation, we employed the philosophy of the Green function together with some integral transform operators and special functions including but not limited to the Laplace, Fourier, and Mellin transform. We presented some examples of exact solution of this class of third-order equations for integer and fractional order derivative. It is important to point out that the value of Agaciro equation can be extended to describe assorted phenomenon in sciences. 1. Introduction An important method used in the field of partial and ordinary linear is Green function method. It is important to remember that the construction of the Green function is an art and difficult exercise because, in the way of construction, one must first make sure of the existence and the uniqueness of this function, which is a whole topic in mathematics. Once the uniqueness and the existence are insured, one needs to have a knowledge of methods of solving either partial differential equations or ordinary differential equations, again this is a whole topic on its own in mathematics. Within the scope of fractional calculus, one further needs a clear knowledge of special function and other useful integral transform operators including but not limited to Laplace transform, Fourier transform, and Mellin transform. This method was recently extended to the scope of partial and ordinary differential equations with noninteger order derivative [1, 2]. It should be mentioned that the finding of the Green function in the folder of the fractional calculus is very difficult because this involves at the same time some special functions and also some integral transform, for instance the Mellin, the Laplace, and the Fourier transform operators. It is perhaps important to present a brief history regarding the Green function method. In mathematical sciences and related disciplines, a Green function is the desired answer of an inhomogeneous differential equation defined on a domain, with particular preliminary conditions or boundary conditions. By means of the superposition theory, the convolution of a Green function with a subjective function on that domain is the solution to the inhomogeneous differential equation for the unknown function . These classes of functions are named after the British mathematician George Green, who first developed the concept in the year 1830 [3, 4]. In the

References

[1]  I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.
[2]  K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience, John Wiley & Sons, New York, NY, USA, 1993.
[3]  ?. S. Bayin, Mathematical Methods in Science and Engineering, chapter 18-19, John Wiley & Sons, Hoboken, NJ, USA, 2006.
[4]  A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, Chapman & Hall/CRC Press, Boca Raton, Fla, USA, 2nd edition, 2003.
[5]  S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, Switzerland, 1993.
[6]  I. Podlubny, “Geometric and physical interpretation of fractional integration and fractional differentiation,” Fractional Calculus & Applied Analysis, vol. 5, no. 4, pp. 367–386, 2002.
[7]  A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science, Amsterdam, The Netherlands, 2006.
[8]  A. Atangana and A. Secer, “A note on fractional order derivatives and table of fractional derivatives of some special functions,” Abstract and Applied Analysis, vol. 2013, Article ID 279681, 8 pages, 2013.
[9]  A. Anatoly, J. Juan, and M. S. Hari, Theory and Application of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier, Amsterdam, The Netherlands, 2006.
[10]  Y. Luchko and R. Groneflo, The Initial Value Problem for Some Fractional Differential Equations with the Caputo Derivative, Preprint Series A08-98, Fachbereich Mathematik und Informatik, Freic Universit?t, Berlin, Germany, 1998.
[11]  M. Caputo, “Linear models of dissipation whose Q is almost frequency independent—II,” Geophysical Journal International, vol. 13, no. 5, pp. 529–539, 1967.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413