全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Inflammatory Chemokine CCL5 and Cancer Progression

DOI: 10.1155/2014/292376

Full-Text   Cite this paper   Add to My Lib

Abstract:

Until recently, inflammatory chemokines were viewed mainly as indispensable “gate keepers” of immunity and inflammation. However, updated research indicates that cancer cells subvert the normal chemokine system and these molecules and their receptors become important constituents of the tumor microenvironment with very different ways to exert tumor-promoting roles. The CCR5 and the CCL5 ligand have been detected in some hematological malignancies, lymphomas, and a great number of solid tumors, but extensive studies on the role of the CCL5/CCR axis were performed only in a limited number of cancers. This review summarizes updated information on the role of CCL5 and its receptor CCR5 in cancer cell proliferation, metastasis, and the formation of an immunosuppressive microenvironment and highlights the development of newer therapeutic strategies aimed to inhibit the binding of CCL5 to CCR5, to inhibit CCL5 secretion, or to inhibit the interactions among tumor cells and the microenvironment leading to CCL5 secretion. 1. Introduction Epidemiological and experimental studies provided clear evidence that unresolved pathogen infections and chronic inflammation promote tumor development and led to the inclusion of inflammation among the hallmarks of cancer [1, 2]. On the other hand, cancer cells not only make themselves “invisible” to the immune system, but also favor the formation of an immunosuppressive microenvironment unable to eliminate cancer cells [3]. As a result, the reduced secretion of molecules acting as tumor-promoting factors and the normalization of the tumor microenvironment [4] are main goals to develop appropriate antitumor strategies. The tumor microenvironment is composed of stromal and inflammatory cells that are recruited and/or locally induced to proliferate or differentiate by tumor cells or by normal cells “educated” by tumor cells. They communicate directly through cell-cell contact but also indirectly through paracrine signals [4]. These signals are predominantly constituted by cytokines and chemokines (chemotactic cytokines), key orchestrators of leukocytes trafficking under homeostatic conditions as well as during inflammation and cancer [5] and part of the molecular pathways driving cancer cell survival, motility, and invasiveness [6]. Chemokines, identified on the basis of their ability to induce chemotaxis, have a fundamental role not only in inflammation and immune surveillance but also in cancer progression [7]. Chemokines, secreted by the tumor cells from primary tumors or metastatic sites or by the normal cells recruited

References

[1]  A. Mantovani, “Molecular pathways linking inflammation and cancer,” Current Molecular Medicine, vol. 10, no. 4, pp. 369–373, 2010.
[2]  D. Hanahan and L. M. Coussens, “Accessories to the crime: functions of cells recruited to the tumor microenvironment,” Cancer Cell, vol. 21, no. 3, pp. 309–322, 2012.
[3]  M. H. Kershaw, J. A. Westwood, and P. K. Darcy, “Gene-engineered T cells for cancer therapy,” Nature Reviews Cancer, vol. 13, no. 8, pp. 525–541, 2013.
[4]  R. K. Jain, “Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers,” Journal of Clinical Oncology, vol. 31, no. 17, pp. 2205–2218, 2013.
[5]  A. Zlotnik and O. Yoshie, “The chemokine superfamily revisited,” Immunity, vol. 36, no. 5, pp. 705–716, 2012.
[6]  J. Candido and T. Hagemann, “Cancer-related inflammation,” Journal of Clinical Immunology, vol. 33, supplement 1, pp. S79–S84, 2013.
[7]  F. R. Balkwill, “The chemokine system and cancer,” Journal of Pathology, vol. 226, no. 2, pp. 148–157, 2012.
[8]  D. Aldinucci, A. Gloghini, A. Pinto, R. de Filippi, and A. Carbone, “The classical Hodgkin's lymphoma microenvironment and its role in promoting tumour growth and immune escape,” Journal of Pathology, vol. 221, no. 3, pp. 248–263, 2010.
[9]  S. A. Meadows, F. Vega, A. Kashishian et al., “PI3Kδ inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma,” Blood, vol. 119, no. 8, pp. 1897–1900, 2012.
[10]  J. Cook and T. Hagemann, “Tumour-associated macrophages and cancer,” Current Opinion in Pharmacology, vol. 13, no. 4, pp. 595–601, 2013.
[11]  L.-Y. Chang, Y.-C. Lin, J. Mahalingam et al., “Tumor-derived chemokine CCL5 enhances TGF-β-mediated killing of CD8+ T cells in colon cancer by T-regulatory cells,” Cancer Research, vol. 72, no. 5, pp. 1092–1102, 2012.
[12]  X. Yang, J. Hou, Z. Han et al., “One cell, multiple roles: contribution of mesenchymal stem cells to tumor development in tumor microenvironment,” Cell & Bioscience, vol. 3, no. 1, pp. 5–3, 2013.
[13]  E. Schlecker, A. Stojanovic, C. Eisen et al., “Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth,” The Journal of Immunology, vol. 189, no. 12, pp. 5602–5611, 2012.
[14]  A. Ben-Baruch, “The tumor-promoting flow of cells into, within and out of the tumor site: regulation by the inflammatory axis of TNFα and chemokines,” Cancer Microenvironment, vol. 5, no. 2, pp. 151–164, 2012.
[15]  A. E. Karnoub, A. B. Dash, A. P. Vo et al., “Mesenchymal stem cells within tumour stroma promote breast cancer metastasis,” Nature, vol. 449, no. 7162, pp. 557–563, 2007.
[16]  P. Allavena, G. Germano, F. Marchesi, and A. Mantovani, “Chemokines in cancer related inflammation,” Experimental Cell Research, vol. 317, no. 5, pp. 664–673, 2011.
[17]  M. Oppermann, “Chemokine receptor CCR5: insights into structure, function, and regulation,” Cellular Signalling, vol. 16, no. 11, pp. 1201–1210, 2004.
[18]  G. Soria and A. Ben-Baruch, “The inflammatory chemokines CCL2 and CCL5 in breast cancer,” Cancer Letters, vol. 267, no. 2, pp. 271–285, 2008.
[19]  D. Aldinucci, A. Gloghini, A. Pinto, A. Colombatti, and A. Carbone, “The role of CD40/CD40L and interferon regulatory factor 4 in Hodgkin lymphoma microenvironment,” Leukemia and Lymphoma, vol. 53, no. 2, pp. 195–201, 2012.
[20]  M. J. Chenoweth, M. F. Mian, N. G. Barra et al., “IL-15 can signal via IL-15Rα, JNK, and NF-κB To drive RANTES production by myeloid cells,” Journal of Immunology, vol. 188, no. 9, pp. 4149–4157, 2012.
[21]  J. Udi, J. Schuler, D. Wider et al., “Potent in vitro and in vivo activity of sorafenib in multiple myeloma: induction of cell death, CD138-downregulation and inhibition of migration through actin depolymerization,” British Journal of Haematology, vol. 161, no. 1, pp. 104–116, 2013.
[22]  V. Appay and S. L. Rowland-Jones, “RANTES: a versatile and controversial chemokine,” Trends in Immunology, vol. 22, no. 2, pp. 83–87, 2001.
[23]  B. Roscic-Mrkic, M. Fischer, C. Leemann et al., “RANTES (CCL5) uses the proteoglycan CD44 as an auxiliary receptor to mediate cellular activation signals and HIV-1 enhancement,” Blood, vol. 102, no. 4, pp. 1169–1177, 2003.
[24]  A. J. Ridley, M. A. Schwartz, K. Burridge et al., “Cell migration: integrating signals from front to back,” Science, vol. 302, no. 5651, pp. 1704–1709, 2003.
[25]  C.-Y. Huang, Y.-C. Fong, C.-Y. Lee et al., “CCL5 increases lung cancer migration via PI3K, Akt and NF-κB pathways,” Biochemical Pharmacology, vol. 77, no. 5, pp. 794–803, 2009.
[26]  H. Long, R. Xie, T. Xiang et al., “Autocrine CCL5 signaling promotes invasion and migration of CD133+ ovarian cancer stem-like cells via NF-kappaB-mediated MMP-9 upregulation,” Stem Cells, vol. 30, no. 10, pp. 2309–2319, 2012.
[27]  T. Kato, Y. Fujita, K. Nakane et al., “CCR1/CCL5 interaction promotes invasion of taxane-resistant PC3 prostate cancer cells by increasing secretion of MMPs 2/9 and by activating ERK and Rac signaling,” Cytokine, vol. 64, no. 1, pp. 251–257, 2013.
[28]  J. E. Kim, H. S. Kim, Y. J. Shin et al., “LYR71, a derivative of trimeric resveratrol, inhibits tumorigenesis by blocking STAT3-mediated matrix metalloproteinase 9 expression,” Experimental and Molecular Medicine, vol. 40, no. 5, pp. 514–522, 2008.
[29]  S.-W. Wang, H.-H. Wu, S.-C. Liu et al., “CCL5 and CCR5 interaction promotes cell motility in human osteosarcoma,” PLoS ONE, vol. 7, no. 4, Article ID e35101, 2012.
[30]  D. Raman, T. Sobolik-Delmaire, and A. Richmond, “Chemokines in health and disease,” Experimental Cell Research, vol. 317, no. 5, pp. 575–589, 2011.
[31]  D. F. Gao and E. N. Fish, “89: a role for CCL5 in breast cancer cell metabolism,” Cytokine, vol. 63, no. 3, p. 264, 2013.
[32]  I. Borrello, “Can we change the disease biology of multiple myeloma?” Leukemia Research, vol. 36, supplement 1, pp. S3–S12, 2012.
[33]  M. Abe, K. Hiura, J. Wilde et al., “Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: a vicious cycle between bone destruction and myeloma expansion,” Blood, vol. 104, no. 8, pp. 2484–2491, 2004.
[34]  Y. Oba, J. W. Lee, L. A. Ehrlich et al., “MIP-1α utilizes both CCR1 and CCR5 to induce osteoclast formation and increase adhesion of myeloma cells to marrow stromal cells,” Experimental Hematology, vol. 33, no. 3, pp. 272–278, 2005.
[35]  E. Menu, E. de Leenheer, H. de Raeve et al., “Role of CCR1 and CCR5 in homing and growth of multiple myeloma and in the development of osteolytic lesions: a study in the 5TMM model,” Clinical and Experimental Metastasis, vol. 23, no. 5-6, pp. 291–300, 2006.
[36]  G. D. Roodman and S. J. Choi, “MIP-1 alpha and myeloma bone disease,” Cancer Treatment and Research, vol. 118, pp. 83–100, 2004.
[37]  T. Hashimoto, M. Abe, T. Oshima et al., “Ability of myeloma cells to secrete macrophage inflammatory protein (MIP)-1α and MIP-1β correlates with lytic bone lesions in patients with multiple myeloma,” British Journal of Haematology, vol. 125, no. 1, pp. 38–41, 2004.
[38]  E. Terpos, M. Politou, R. Szydlo, J. M. Goldman, J. F. Apperley, and A. Rahemtulla, “Serum levels of macrophage inflammatory protein-1 alpha (MIP-1α) correlate with the extent of bone disease and survival in patients with multiple myeloma,” British Journal of Haematology, vol. 123, no. 1, pp. 106–109, 2003.
[39]  M. Roussou, A. Tasidou, M. A. Dimopoulos et al., “Increased expression of macrophage inflammatory protein-1α on trephine biopsies correlates with extensive bone disease, increased angiogenesis and advanced stage in newly diagnosed patients with multiple myeloma,” Leukemia, vol. 23, no. 11, pp. 2177–2181, 2009.
[40]  S. Vallet, S. Pozzi, K. Patel et al., “A novel role for CCL3 (MIP-1α) in myeloma-induced bone disease via osteocalcin downregulation and inhibition of osteoblast function,” Leukemia, vol. 25, no. 7, pp. 1174–1181, 2011.
[41]  Y. Cao, T. Luetkens, S. Kobold et al., “The cytokine/chemokine pattern in the bone marrow environment of multiple myeloma patients,” Experimental Hematology, vol. 38, no. 10, pp. 860–867, 2010.
[42]  M. Abe, K. Hiura, J. Wilde et al., “Role for macrophage inflammatory protein (MIP)-1α and MIP-1β in the development of osteolytic lesions in multiple myeloma,” Blood, vol. 100, no. 6, pp. 2195–2202, 2002.
[43]  S. Lentzsch, M. Gries, M. Janz, R. Bargou, B. D?rken, and M. Y. Mapara, “Macrophage inflammatory protein 1-alpha (MIP-1α) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells,” Blood, vol. 101, no. 9, pp. 3568–3573, 2003.
[44]  S. Vallet and K. C. Anderson, “CCR1 as a target for multiple myeloma,” Expert Opinion on Therapeutic Targets, vol. 15, no. 9, pp. 1037–1047, 2011.
[45]  C. M?ller, T. Str?mberg, M. Juremalm, K. Nilsson, and G. Nilsson, “Expression and function of chemokine receptors in human multiple myeloma,” Leukemia, vol. 17, no. 1, pp. 203–210, 2003.
[46]  D. J. Dairaghi, B. O. Oyajobi, A. Gupta et al., “CCR1 blockade reduces tumor burden and osteolysis in vivo in a mouse model of myeloma bone disease,” Blood, vol. 120, no. 7, pp. 1449–1457, 2012.
[47]  E. Maggio, A. van den Berg, A. Diepstra, J. Kluiver, L. Visser, and S. Poppema, “Chemokines, cytokines and their receptors in Hodgkin's lymphoma cell lines and tissues,” Annals of Oncology, vol. 13, supplement 1, pp. 52–56, 2002.
[48]  M. Fischer, M. Juremalm, N. Olsson et al., “Expression of CCL5/RANTES by Hodgkin and reed-sternberg cells and its possible role in the recruitment of mast cells into lymphomatous tissue,” International Journal of Cancer, vol. 107, no. 2, pp. 197–201, 2003.
[49]  D. Aldinucci, D. Lorenzon, L. Cattaruzza et al., “Expression of CCR5 receptors on Reed-Sternberg cells and Hodgkin lymphoma cell lines: involvement of CCL5/Rantes in tumor cell growth and microenvironmental interactions,” International Journal of Cancer, vol. 122, no. 4, pp. 769–776, 2008.
[50]  M. Niens, L. Visser, I. M. Nolte et al., “Serum chemokine levels in Hodgkin lymphoma patients: highly increased levels of CCL17 and CCL22,” British Journal of Haematology, vol. 140, no. 5, pp. 527–536, 2008.
[51]  H. Hanamoto, T. Nakayama, H. Miyazato et al., “Expression of CCL28 by Reed-Sternberg cells defines a major subtype of classical Hodgkin's disease with frequent infiltration of eosinophils and/or plasma cells,” American Journal of Pathology, vol. 164, no. 3, pp. 997–1006, 2004.
[52]  K. R. N. Baumforth, A. Birgersdotter, G. M. Reynolds et al., “Expression of the Epstein-Barr virus-encoded Epstein-Barr virus nuclear antigen 1 in Hodgkin's lymphoma cells mediates up-regulation of CCL20 and the migration of regulatory T cells,” American Journal of Pathology, vol. 173, no. 1, pp. 195–204, 2008.
[53]  F. Jundt, I. Anagnostopoulos, K. Bommert et al., “Hodgkin/Reed-Sternberg cells induce fibroblasts to secrete eotaxin, a potent chemoattractant for T cells and eosinophils,” Blood, vol. 94, no. 6, pp. 2065–2071, 1999.
[54]  J. N. Uchihara, A. M. Krensky, T. Matsuda et al., “Transactivation of the CCL5/RANTES gene by Epstein-Barr virus latent membrane protein 1,” International Journal of Cancer, vol. 114, no. 5, pp. 747–755, 2005.
[55]  D. Aldinucci, M. Celegato, C. Borghese, A. Colombatti, and A. Carbone, “IRF4 silencing inhibits Hodgkin lymphoma cell proliferation, survival and CCL5 secretion,” British Journal of Haematology, vol. 152, no. 2, pp. 182–190, 2011.
[56]  D. Aldinucci, A. Pinto, A. Gloghini, and A. Carbone, “Chemokine receptors as therapeutic tools in Hodgkin lymphoma: CCR4 and beyond,” Blood, vol. 115, no. 3, pp. 746–747, 2010.
[57]  G. Luboshits, S. Shina, O. Kaplan et al., “Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma,” Cancer Research, vol. 59, no. 18, pp. 4681–4687, 1999.
[58]  Y. Niwa, H. Akamatsu, H. Niwa, H. Sumi, Y. Ozaki, and A. Abe, “Correlation of tissue and plasma RANTES levels with disease course in patients with breast or cervical cancer,” Clinical Cancer Research, vol. 7, no. 2, pp. 285–289, 2001.
[59]  I. Bièche, F. Lerebours, S. Tozlu, M. Espie, M. Marty, and R. Lidereau, “Molecular profiling of inflammatory breast cancer: identification of a poor-prognosis gene expression signature,” Clinical Cancer Research, vol. 10, no. 20, pp. 6789–6795, 2004.
[60]  Z. Mi, S. D. Bhattacharya, V. M. Kim, H. Guo, L. J. Talbotq, and P. C. Kuo, “Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis,” Carcinogenesis, vol. 32, no. 4, pp. 477–487, 2011.
[61]  Y. Zhang, F. Yao, X. Yao et al., “Role of CCL5 in invasion, proliferation and proportion of CD44+/CD24- phenotype of MCF-7 cells and correlation of CCL5 and CCR5 expression with breast cancer progression,” Oncology Reports, vol. 21, no. 4, pp. 1113–1121, 2009.
[62]  M. Velasco-Velazquez, X. Jiao, M. de la Fuente et al., “CCR5 antagonist blocks metastasis of basal breast cancer cells,” Cancer Research, vol. 72, no. 15, pp. 3839–3850, 2012.
[63]  D. Lv, Y. Zhang, H. J. Kim, L. Zhang, and X. Ma, “CCL5 as a potential immunotherapeutic target in triple-negative breast cancer,” Cellular & Molecular Immunology, vol. 10, no. 4, pp. 303–310, 2013.
[64]  S. Lin, S. Wan, L. Sun et al., “Chemokine C-C motif receptor 5 and C-C motif ligand 5 promote cancer cell migration under hypoxia,” Cancer Science, vol. 103, no. 5, pp. 904–912, 2012.
[65]  M. Swamydas, K. Ricci, S. L. Rego, and D. Dreau, “Mesenchymal stem cell-derived CCL-9 and CCL-5 promote mammary tumor cell invasion and the activation of matrix metalloproteinases,” Cell Adhesion & Migration, vol. 7, no. 3, pp. 315–324, 2013.
[66]  E. Azenshtein, G. Luboshits, S. Shina et al., “The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity,” Cancer Research, vol. 62, no. 4, pp. 1093–1102, 2002.
[67]  Y. Zhang, D. Lv, H. J. Kim et al., “A novel role of hematopoietic CCL5 in promoting triple-negative mammary tumor progression by regulating generation of myeloid-derived suppressor cells,” Cell Research, vol. 23, no. 3, pp. 394–408, 2013.
[68]  N. Yaal-Hahoshen, S. Shina, L. Leider-Trejo et al., “The chemokine CCL5 as a potential prognostic factor predicting disease progression in stage II breast cancer patients,” Clinical Cancer Research, vol. 12, no. 15, pp. 4474–4480, 2006.
[69]  Z. A. Dehqanzada, C. E. Storrer, M. T. Hueman et al., “Assessing serum cytokine profiles in breast cancer patients receiving a HER2/neu vaccine using Luminex technology,” Oncology Reports, vol. 17, no. 3, pp. 687–694, 2007.
[70]  A. Smeets, B. Brouwers, S. Hatse et al., “Circulating CCL5 levels in patients with breast cancer: is there a correlation with lymph node metastasis?” ISRN Immunology, vol. 2013, Article ID 453561, 5 pages, 2013.
[71]  E. H. Yi, C. S. Lee, J. K. Lee et al., “STAT3-RANTES autocrine signaling is essential for tamoxifen resistance in human breast cancer cells,” Molecular Cancer Research, vol. 11, no. 1, pp. 31–42, 2013.
[72]  A. S. Payne and L. A. Cornelius, “The role of chemokines in melanoma tumor growth and metastasis,” Journal of Investigative Dermatology, vol. 118, no. 6, pp. 915–922, 2002.
[73]  U. Mrowietz, U. Schwenk, S. Maune et al., “The chemokine RANTES is secreted by human melanoma cells and is associated with enhanced tumour formation in nude mice,” British Journal of Cancer, vol. 79, no. 7-8, pp. 1025–1031, 1999.
[74]  S. Mattei, M. P. Colombo, C. Melani, A. Silvani, G. Parmiani, and M. Herlyn, “Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes,” International Journal of Cancer, vol. 56, no. 6, pp. 853–857, 1994.
[75]  H. Seidl, E. Richtig, H. Tilz et al., “Profiles of chemokine receptors in melanocytic lesions: de novo expression of CXCR6 in melanoma,” Human Pathology, vol. 38, no. 5, pp. 768–780, 2007.
[76]  J. K. Song, M. H. Park, D.-Y. Choi et al., “Deficiency of C-C chemokine receptor 5 suppresses tumor development via inactivation of NF-κB and upregulation of IL-1Ra in Melanoma model,” PLoS ONE, vol. 7, no. 5, Article ID e33747, 2012.
[77]  M. Mellado, A. M. de Ana, M. C. Moreno, C. Martínez, and J. M. Rodríguez-Frade, “A potential immune escape mechanism by melanoma cells through the activation of chemokine-induced T cell death,” Current Biology, vol. 11, no. 9, pp. 691–696, 2001.
[78]  R. Fukui, H. Nishimori, F. Hata et al., “Metastases-related genes in the classification of liver and peritoneal metastasis in human gastric cancer,” Journal of Surgical Research, vol. 129, no. 1, pp. 94–100, 2005.
[79]  K. Okita, T. Furuhata, Y. Kimura et al., “The interplay between gastric cancer cell lines and PBMCs mediated by the CC chemokine RANTES plays an important role in tumor progression,” Journal of Experimental and Clinical Cancer Research, vol. 24, no. 3, pp. 439–446, 2005.
[80]  H. K. Kim, K. S. Song, Y. S. Park et al., “Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor,” European Journal of Cancer, vol. 39, no. 2, pp. 184–191, 2003.
[81]  Z. Cao, X. Xu, X. Luo et al., “Role of RANTES and its receptor in gastric cancer metastasis,” Journal of Huazhong University of Science and Technology—Medical Science, vol. 31, no. 3, pp. 342–347, 2011.
[82]  K. B. Hahm, Y. J. Song, T. Y. Oh et al., “Chemoprevention of Helicobacter pylori-associated gastric carcinogenesis in a mouse model: is it possible?” Journal of Biochemistry and Molecular Biology, vol. 36, no. 1, pp. 82–94, 2003.
[83]  H. Sugasawa, T. Ichikura, H. Tsujimoto et al., “Prognostic significance of expression of CCL5/RANTES receptors in patients with gastric cancer,” Journal of Surgical Oncology, vol. 97, no. 5, pp. 445–450, 2008.
[84]  H. Sugasawa, T. Ichikura, M. Kinoshita et al., “Gastric cancer cells exploit CD4+ cell-derived CCL5 for their growth and prevention of CD8+ cell-involved tumor elimination,” International Journal of Cancer, vol. 122, no. 11, pp. 2535–2541, 2008.
[85]  B. Cambien, P. Richard-Fiardo, B. F. Karimdjee et al., “CCL5 neutralization restricts cancer growth and potentiates the targeting of PDGFRβ in colorectal carcinoma,” PLoS ONE, vol. 6, no. 12, Article ID e28842, 2011.
[86]  G. G. Vaday, D. M. Peehl, P. A. Kadam, and D. M. Lawrence, “Expression of CCL5 (RANTES) and CCR5 in prostate cancer,” Prostate, vol. 66, no. 2, pp. 124–134, 2006.
[87]  K. Maeda, D. Das, H. Nakata, and H. Mitsuya, “CCR5 inhibitors: emergence, success, and challenges,” Expert Opinion on Emerging Drugs, vol. 17, no. 2, pp. 135–145, 2012.
[88]  M. Colombatti, S. Grasso, A. Porzia et al., “The prostate specific membrane antigen regulates the expression of IL-6 and CCL5 in prostate tumour cells by activating the MAPK pathways,” PLoS ONE, vol. 4, no. 2, Article ID e4608, 2009.
[89]  R. P. M. Negus, G. W. H. Stamp, J. Hadley, and F. R. Balkwill, “Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines,” American Journal of Pathology, vol. 150, no. 5, pp. 1723–1734, 1997.
[90]  S. Tsukishiro, N. Suzumori, H. Nishikawa, A. Arakawa, and K. Suzumori, “Elevated serum RANTES levels in patients with ovarian cancer correlate with the extent of the disorder,” Gynecologic Oncology, vol. 102, no. 3, pp. 542–545, 2006.
[91]  D. Milliken, C. Scotton, S. Raju, F. Balkwill, and J. Wilson, “Analysis of chemokines and chemokine receptor expression in ovarian cancer ascites,” Clinical Cancer Research, vol. 8, no. 4, pp. 1108–1114, 2002.
[92]  S. Madar, I. Goldstein, and V. Rotter, “‘Cancer associated fibroblasts’—more than meets the eye,” Trends in Molecular Medicine, vol. 19, no. 8, pp. 447–453, 2013.
[93]  R. Schickel, B. Boyerinas, S.-M. Park, and M. E. Peter, “MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death,” Oncogene, vol. 27, no. 45, pp. 5959–5974, 2008.
[94]  A. K. Mitra, M. Zillhardt, Y. Hua et al., “MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer,” Cancer Discovery, vol. 2, no. 12, pp. 1100–1108, 2012.
[95]  M. Baba, O. Nishimura, N. Kanzaki et al., “A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 10, pp. 5698–5703, 1999.
[96]  M. Velasco-Velazquez and R. G. Pestell, “The CCL5/CCR5 axis promotes metastasis in basal breast cancer,” Oncoimmunology, vol. 2, no. 4, 2013.
[97]  L. Ochoa-Callejero, L. Perez-Martinez, S. Rubio-Mediavilla, J. A. Oteo, A. Martinez, and J. R. Blanco, “Maraviroc, a CCR5 antagonist, prevents development of hepatocellular carcinoma in a mouse model,” PLoS ONE, vol. 8, no. 1, Article ID e53992, 2013.
[98]  F. Zhang, C. K. Arnatt, K. M. Haney et al., “Structure activity relationship studies of natural product chemokine receptor CCR5 antagonist anibamine toward the development of novel anti prostate cancer agents,” European Journal of Medicinal Chemistry, vol. 55, pp. 395–408, 2012.
[99]  X. Zhang, K. M. Haney, A. C. Richardson et al., “Anibamine, a natural product CCR5 antagonist, as a novel lead for the development of anti-prostate cancer agents,” Bioorganic and Medicinal Chemistry Letters, vol. 20, no. 15, pp. 4627–4630, 2010.
[100]  Y. Zhang, C. K. Arnatt, F. Zhang, J. Wang, K. M. Haney, and X. Fang, “The potential role of anibamine, a natural product CCR5 antagonist, and its analogues as leads toward development of anti-ovarian cancer agents,” Bioorganic & Medicinal Chemistry Letters, vol. 22, no. 15, pp. 5093–5097, 2012.
[101]  M. Gallo, A. de Luca, L. Lamura, and N. Normanno, “Zoledronic acid blocks the interaction between mesenchymal stem cells and breast cancer cells: implications for adjuvant therapy of breast cancer,” Annals of Oncology, vol. 23, no. 3, pp. 597–604, 2012.
[102]  C. Borghese, L. Cattaruzza, E. Pivetta et al., “Gefitinib inhibits the cross-talk between mesenchymal stem cells and prostate cancer cells leading to tumor cell proliferation and inhibition of docetaxel activity,” Journal of Cellular Biochemistry, vol. 114, no. 5, pp. 1135–1144, 2013.
[103]  T. J. Schall and A. E. I. Proudfoot, “Overcoming hurdles in developing successful drugs targeting chemokine receptors,” Nature Reviews Immunology, vol. 11, no. 5, pp. 355–363, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133