全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

GAPDH Pseudogenes and the Quantification of Feline Genomic DNA Equivalents

DOI: 10.1155/2013/587680

Full-Text   Cite this paper   Add to My Lib

Abstract:

Quantitative real-time PCR (qPCR) is broadly used to detect and quantify nucleic acid targets. In order to determine cell copy number and genome equivalents, a suitable reference gene that is present in a defined number in the genome is needed, preferably as a single copy gene. For most organisms, a variable number of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) pseudogenes have been reported. However, it has been suggested that a single-copy of the GAPDH pseudogene is present in the feline genome and that a GAPDH assay can therefore be used to quantify feline genomic DNA (gDNA). The aim of this study was to determine whether one or more GAPDH pseudogenes are present in the feline genome and to provide a suitable alternative qPCR system for the quantification of feline cell copy number and genome equivalents. Bioinformatics and sequencing results revealed that not just one but several closely related GAPDH-like sequences were present in the cat genome. We thus identified, developed, optimized, and validated an alternative reference gene assay using feline albumin (fALB). Our data emphasize the need for an alternative reference gene, apart from the GAPDH pseudogene, for the normalization of gDNA levels. We recommend using the fALB qPCR assay for future studies. 1. Introduction Fluorescence-based quantitative real-time PCR (qPCR) is a highly sensitive method for the detection and quantification of nucleic acids. Due to its conceptual simplicity, sensitivity, specificity, and speed, qPCR applications can be found in a variety of fields, including medicine and the life sciences [1, 2]. In clinical diagnostics, qPCR is broadly used for the detection and quantification of bacterial and viral loads, gene dosage determination, cancer diagnostics, and applications in forensic medicine [3–7]. To assess the cell number present in a PCR reaction, the coanalysis of suitable reference genes is crucial. Such reference genes should be single-copy number genes and should not frequently undergo genetic alterations, to allow the accurate normalization of genomic DNA (gDNA) samples. In addition, internal control genes are also used to investigate abnormalities in gene number, and amplified oncogenes have been shown to have diagnostic, prognostic, and therapeutic relevance. Thus, TaqMan PCR-based gene quantification assays are also used to identify allelic imbalances (germ-line deletions or amplifications), for example, in individuals suffering from breast cancer, cutaneous melanoma, or nervous system tumors [8, 9]. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

References

[1]  M. Kubista, J. M. Andrade, M. Bengtsson et al., “The real-time polymerase chain reaction,” Molecular Aspects of Medicine, vol. 27, no. 2-3, pp. 95–125, 2006.
[2]  S. A. Bustin, “Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays,” Journal of Molecular Endocrinology, vol. 25, no. 2, pp. 169–193, 2000.
[3]  P. S. Bernard and C. T. Wittwer, “Real-time PCR technology for cancer diagnostics,” Clinical Chemistry, vol. 48, no. 8, pp. 1178–1185, 2002.
[4]  I. M. Mackay, K. E. Arden, and A. Nitsche, “Real-time PCR in virology,” Nucleic Acids Research, vol. 30, no. 6, pp. 1292–1305, 2002.
[5]  I. M. Mackay, “Real-time PCR in the microbiology laboratory,” Clinical Microbiology and Infection, vol. 10, no. 3, pp. 190–212, 2004.
[6]  S. A. Bustin and R. Mueller, “Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis,” Clinical Science, vol. 109, no. 4, pp. 365–379, 2005.
[7]  L. I. Moreno, C. M. Tate, E. L. Knott, et al., “Determination of an effective housekeeping gene for the quantification of mRNA for forensic applications,” Journal of Forensic Sciences, vol. 57, no. 4, pp. 1051–1058, 2012.
[8]  I. Laurendeau, M. Bahuau, N. Vodovar et al., “TaqMan PCR-based gene dosage assay for predictive testing in individuals from a cancer family with INK4 locus haploinsufficiency,” Clinical Chemistry, vol. 45, no. 7, pp. 982–986, 1999.
[9]  I. Bieche, M. H. Champème, D. Vidaud, R. Lidereau, and M. Vidaud, “Novel approach to quantitative polymerase chain reaction using real-time detection: application to the detection of gene amplification in breast cancer,” International Journal of Cancer, vol. 78, no. 5, pp. 661–666, 1998.
[10]  C. M. Leutenegger, C. N. Mislin, B. Sigrist, M. U. Ehrengruber, R. Hofmann-Lehmann, and H. Lutz, “Quantitative real-time PCR for the measurement of feline cytokine mRNA,” Veterinary Immunology and Immunopathology, vol. 71, no. 3-4, pp. 291–305, 1999.
[11]  Y. Kessler, A. K. Helfer-Hungerbuehler, V. Cattori et al., “Quantitative TaqMan? real-time PCR assays for gene expression normalisation in feline tissues,” BMC Molecular Biology, vol. 10, article no. 106, 2009.
[12]  G. A. Wolf-Jackel, V. Cattori, C. P. Geret, et al., “Quantification of the humoral immune response and hemoplasma blood and tissue loads in cats coinfected with “Candidatus Mycoplasma haemominutum” and feline leukemia virus,” Microbial Pathogenesis, vol. 53, no. 2, pp. 74–80, 2012.
[13]  M. Novacco, F. S. Boretti, G. A. Wolf-Jackel, et al., “Chronic, “Candidatus Mycoplasma turicensis” Infection,” Veterinary Research, vol. 42, no. 1, article 59, 2011.
[14]  S. Molia, B. B. Chomel, R. W. Kasten et al., “Prevalence of Bartonella infection in wild African lions (Panthera leo) and cheetahs (Acinonyx jubatus),” Veterinary Microbiology, vol. 100, no. 1-2, pp. 31–41, 2004.
[15]  Y. J. Liu, D. Zheng, S. Balasubramanian et al., “Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates: the anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity,” BMC Genomics, vol. 10, article 480, 2009.
[16]  S. Riad-El Sabrouty, J. M. Blanchard, L. Marty, P. Jeanteur, and M. Piechaczyk, “The Muridae glyceraldehyde-3-phosphate dehydrogenase family,” Journal of Molecular Evolution, vol. 29, no. 3, pp. 212–222, 1989.
[17]  L. McDonell and G. Drouin, “The abundance of processed pseudogenes derived from glycolytic genes is correlated with their expression level,” Genome, vol. 55, no. 2, pp. 147–151, 2012.
[18]  Z. Zhang, N. Carriero, and M. Gerstein, “Comparative analysis of processed pseudogenes in the mouse and human genomes,” Trends in Genetics, vol. 20, no. 2, pp. 62–67, 2004.
[19]  P. Ruud, O. Fodstad, and E. Hovig, “Identification of a novel cytokeratin 19 pseudogene that may interfere with reverse transcriptase-polymerase chain reaction assays used to detect micrometastatic tumor cells,” International Journal of Cancer, vol. 80, no. 1, pp. 119–125, 1999.
[20]  B. Garbay, E. Boue-Grabot, and M. Garret, “Processed pseudogenes interfere with reverse transcriptase-polymerase chain reaction controls,” Analytical Biochemistry, vol. 237, no. 1, pp. 157–159, 1996.
[21]  C. P. Geret, B. Riond, V. Cattori, M. L. Meli, R. Hofmann-Lehmann, and H. Lutz, “Housing and care of laboratory cats: from requirements to practice,” Schweizer Archiv fur Tierheilkunde, vol. 153, no. 4, pp. 157–164, 2011.
[22]  A. K. Helfer-Hungerbuehler, V. Cattori, F. S. Boretti et al., “Dominance of highly divergent feline leukemia virus A progeny variants in a cat with recurrent viremia and fatal lymphoma,” Retrovirology, vol. 7, no. 1, article 14, 2010.
[23]  M. Kullberg, M. A. Nilsson, U. Arnason, E. H. Harley, and A. Janke, “Housekeeping genes for phylogenetic analysis of eutherian relationships,” Molecular Biology and Evolution, vol. 23, no. 8, pp. 1493–1503, 2006.
[24]  A. Dehée, R. Césaire, N. Désiré et al., “Quantitation of HTLV-I proviral load by a TaqMan real-time PCR assay,” Journal of Virological Methods, vol. 102, no. 1-2, pp. 37–51, 2002.
[25]  H. K. Chung, T. Unangst, J. Treece, D. Weiss, and P. Markham, “Development of real-time PCR assays for quantitation of simian betaretrovirus serotype-1, -2, -3, and -5 viral DNA in Asian monkeys,” Journal of Virological Methods, vol. 152, no. 1-2, pp. 91–97, 2008.
[26]  B. Willi, F. S. Boretti, V. Cattori et al., “Identification, molecular characterization, and experimental transmission of a new hemoplasma isolate from a cat with hemolytic anemia in Switzerland,” Journal of Clinical Microbiology, vol. 43, no. 6, pp. 2581–2585, 2005.
[27]  V. Cattori and R. Hofmann-Lehmann, “Absolute quantitation of feline leukemia virus proviral DNA and viral RNA loads by TaqMan real-time PCR and RT-PCR,” Methods in Molecular Biology, vol. 429, pp. 73–87, 2008.
[28]  S. A. Bustin, V. Benes, J. A. Garson et al., “The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments,” Clinical Chemistry, vol. 55, no. 4, pp. 611–622, 2009.
[29]  D. Klein, P. Janda, R. Steinborn, M. Müller, B. Salmons, and W. H. Günzburg, “Proviral load determination of different feline immunodeficiency virus isolates using real-time polymerase chain reaction: influence of mismatches on quantification,” Electrophoresis, vol. 20, no. 2, pp. 291–299, 1999.
[30]  J. U. Pontius and S. J. O'Brien, “Genome annotation resource fields—GARFIELD: a genome browser for Felis catus,” Journal of Heredity, vol. 98, no. 5, pp. 386–389, 2007.
[31]  M. K. Kringen, C. Stormo, R. M. Grimholt, J. P. Berg, and A. P. Piehler, “Copy number variations of the ATP-binding cassette transporter ABCC6 gene and its pseudogenes,” BMC Research Notes, vol. 5, no. 1, article 425, 2012.
[32]  J. A. Thomas, T. D. Gagliardi, W. G. Alvord, M. Lubomirski, W. J. Bosche, and R. J. Gorelick, “Human immunodeficiency virus type 1 nucleocapsid zinc-finger mutations cause defects in reverse transcription and integration,” Virology, vol. 353, no. 1, pp. 41–51, 2006.
[33]  N. Désiré, A. Dehée, V. Schneider et al., “Quantification of human immunodeficiency virus type 1 proviral load by a TaqMan real-time PCR assay,” Journal of Clinical Microbiology, vol. 39, no. 4, pp. 1303–1310, 2001.
[34]  A. Waters, A. L. A. Oliveira, S. Coughlan et al., “Multiplex real-time PCR for the detection and quantitation of HTLV-1 and HTLV-2 proviral load: addressing the issue of indeterminate HTLV results,” Journal of Clinical Virology, vol. 52, no. 1, pp. 38–44, 2011.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133