全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Auditory-Cortex Short-Term Plasticity Induced by Selective Attention

DOI: 10.1155/2014/216731

Full-Text   Cite this paper   Add to My Lib

Abstract:

The ability to concentrate on relevant sounds in the acoustic environment is crucial for everyday function and communication. Converging lines of evidence suggests that transient functional changes in auditory-cortex neurons, “short-term plasticity”, might explain this fundamental function. Under conditions of strongly focused attention, enhanced processing of attended sounds can take place at very early latencies (~50?ms from sound onset) in primary auditory cortex and possibly even at earlier latencies in subcortical structures. More robust selective-attention short-term plasticity is manifested as modulation of responses peaking at ~100?ms from sound onset in functionally specialized nonprimary auditory-cortical areas by way of stimulus-specific reshaping of neuronal receptive fields that supports filtering of selectively attended sound features from task-irrelevant ones. Such effects have been shown to take effect in ~seconds following shifting of attentional focus. There are findings suggesting that the reshaping of neuronal receptive fields is even stronger at longer auditory-cortex response latencies (~300?ms from sound onset). These longer-latency short-term plasticity effects seem to build up more gradually, within tens of seconds after shifting the focus of attention. Importantly, some of the auditory-cortical short-term plasticity effects observed during selective attention predict enhancements in behaviorally measured sound discrimination performance. 1. Introduction As so eloquently defined more than a century ago by philosopher William James, selective attention is “the taking possession by the mind, in clear and vivid form, of one out of what seem several simultaneously possible objects or trains of thought. Focalization, concentration, of consciousness are of its essence. It implies withdrawal from some things in order to deal effectively with others, and is a condition which has a real opposite in the confused, dazed, scatterbrained state” [1]. Subsequent behavioral research has elucidated the principles governing, for example, the role of memory in enabling selective attention in complex auditory scenes (see [2]). Elucidating the neural basis of the outright amazing ability to select task-relevant stimuli, including both external and internal ones such as memories and thoughts, and ignore task-irrelevant stimuli is one of the most fundamental research questions in cognitive neuroscience [3]. As will be reviewed in detail in the following, a number of recent findings have significantly shed light on the neural basis of selective

References

[1]  W. James, The Principles of Psychology, Henry Holt, New York, NY, USA, 1890.
[2]  J. S. Snyder and M. K. Gregg, “Memory for sound, with an ear toward hearing in complex auditory scenes,” Attention, Perception, & Psychophysics, vol. 73, no. 7, pp. 1993–2007, 2011.
[3]  I. P. J??skel?inen, Introduction to Cognitive Neuroscience, Bookboon, Frederiksberg, Denmark, 2012.
[4]  I. P. J??skel?inen, J. Ahveninen, J. W. Belliveau, T. Raij, and M. Sams, “Short-term plasticity in auditory cognition,” Trends in Neurosciences, vol. 30, no. 12, pp. 653–661, 2007.
[5]  I. P. J??skel?inen, J. Ahveninen, M. L. Andermann, J. W. Belliveau, T. Raij, and M. Sams, “Short-term plasticity as a neural mechanism supporting memory and attentional functions,” Brain Research, vol. 1422, pp. 66–81, 2011.
[6]  M. A. Howard III, I. O. Volkov, P. J. Abbas, H. Damasio, M. C. Ollendieck, and M. A. Granner, “A chronic microelectrode investigation of the tonotopic organization of human auditory cortex,” Brain Research, vol. 724, no. 2, pp. 260–264, 1996.
[7]  D. R. M. Langers, W. H. Backes, and P. van Dijk, “Representation of lateralization and tonotopy in primary versus secondary human auditory cortex,” NeuroImage, vol. 34, no. 1, pp. 264–273, 2007.
[8]  D. R. Langers and P. van Dijk, “Mapping the tonotopic organization in human auditory cortex with minimally salient acoustic stimulation,” Cerebal Cortex, vol. 22, no. 9, pp. 2024–2038, 2012.
[9]  C. M. Wessinger, M. H. Buonocore, C. L. Kussmaul, and G. R. Mangun, “Tonotopy in human auditory cortex examined with functional magnetic resonance imaging,” Human Brain Mapping, vol. 5, no. 1, pp. 18–25, 1997.
[10]  D. Bilecen, K. Scheffler, N. Schmid, K. Tschopp, and J. Seelig, “Tonotopic organization of the human auditory cortex as detected by BOLD- FMRI,” Hearing Research, vol. 126, no. 1-2, pp. 19–27, 1998.
[11]  C. Pantev, M. Hoke, K. Lehnertz, B. Lutkenhoner, G. Anogianakis, and W. Wittkowski, “Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields,” Electroencephalography and Clinical Neurophysiology, vol. 69, no. 2, pp. 160–170, 1988.
[12]  M. Huotilainen, H. Tiitinen, J. Lavikainen et al., “Sustained fields of tones and glides reflect tonotopy of the auditory cortex,” NeuroReport, vol. 6, no. 6, pp. 841–844, 1995.
[13]  E. Formisano, D.-S. Kim, F. Di Salle, P.-F. van de Moortele, K. Ugurbil, and R. Goebel, “Mirror-symmetric tonotopic maps in human primary auditory cortex,” Neuron, vol. 40, no. 4, pp. 859–869, 2003.
[14]  U. Hertz and A. Amedi, “Disentangling unisensory and multisensory components in audiovisual integration using a novel multifrequency fMRI spectral analysis,” NeuroImage, vol. 52, no. 2, pp. 617–632, 2010.
[15]  E. Seifritz, F. Di Salle, F. Esposito, M. Herdener, J. G. Neuhoff, and K. Scheffler, “Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence,” NeuroImage, vol. 29, no. 3, pp. 1013–1022, 2006.
[16]  J. Upadhyay, M. Ducros, T. A. Knaus et al., “Function and connectivity in human primary auditory cortex: a combined fMRI and DTI study at 3 Tesla,” Cerebral Cortex, vol. 17, no. 10, pp. 2420–2432, 2007.
[17]  D. L. Woods and C. Alain, “Functional imaging of human auditory cortex,” Current Opinion in Otolaryngology & Head and Neck Surgery, vol. 17, no. 5, pp. 407–411, 2009.
[18]  C. Humphries, E. Liebenthal, and J. R. Binder, “Tonotopic organization of human auditory cortex,” NeuroImage, vol. 50, no. 3, pp. 1202–1211, 2010.
[19]  E. Striem-Amit, U. Hertz, and A. Amedi, “Extensive cochleotopic mapping of human auditory cortical fields obtained with phase-encoding fMRI,” PLoS ONE, vol. 6, no. 3, Article ID e17832, 2011.
[20]  S. da Costa, W. van der Zwaag, J. P. Marques, R. S. J. Frackowiak, S. Clarke, and M. Saenz, “Human primary auditory cortex follows the shape of Heschl's Gyrus,” The Journal of Neuroscience, vol. 31, no. 40, pp. 14067–14075, 2011.
[21]  T. A. Hackett, T. M. Preuss, and J. H. Kaas, “Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans,” Journal of Comparative Neurology, vol. 441, no. 3, pp. 197–222, 2001.
[22]  J. H. Kaas and T. A. Hackett, “Subdivisions of auditory cortex and processing streams in primates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 22, pp. 11793–11799, 2000.
[23]  H. Kosaki, T. Hashikawa, J. He, and E. G. Jones, “Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys,” The Journal of Comparative Neurology, vol. 386, no. 2, pp. 304–316, 1997.
[24]  P. Ku?mierek and J. P. Rauschecker, “Functional specialization of medial auditory belt cortex in the alert rhesus monkey,” Journal of Neurophysiology, vol. 102, no. 3, pp. 1606–1622, 2009.
[25]  M. M. Merzenich and J. F. Brugge, “Representation of the cochlear partition on the superior temporal plane of the macaque monkey,” Brain Research, vol. 50, no. 2, pp. 275–296, 1973.
[26]  A. Morel, P. E. Garraghty, and J. H. Kaas, “Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys,” The Journal of Comparative Neurology, vol. 335, no. 3, pp. 437–459, 1993.
[27]  J. P. Rauschecker, B. Tian, and M. Hauser, “Processing of complex sounds in the macaque nonprimary auditory cortex,” Science, vol. 268, no. 5207, pp. 111–114, 1995.
[28]  J. P. Rauschecker and B. Tian, “Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey,” Journal of Neurophysiology, vol. 91, no. 6, pp. 2578–2589, 2004.
[29]  K. Brodmann, Vergleichende Lokalisationslehre der Grosshirnrinde in Ihren Prinzipien Dargestellt auf Grund des Zellenbaues, Johann Ambrosius Barth, Lepizig, Germany, 1909.
[30]  G. H. Recanzone, D. C. Guard, and M. L. Phan, “Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey,” Journal of Neurophysiology, vol. 83, no. 4, pp. 2315–2331, 2000.
[31]  G. H. Recanzone, D. C. Guard, M. L. Phan, and T.-I. K. Su, “Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey,” Journal of Neurophysiology, vol. 83, no. 5, pp. 2723–2739, 2000.
[32]  D. A. Hall, I. S. Johnsrude, M. P. Haggard, A. R. Palmer, M. A. Akeroyd, and A. Q. Summerfield, “Spectral and temporal processing in human auditory cortex,” Cerebral Cortex, vol. 12, no. 2, pp. 140–149, 2002.
[33]  H. C. Hart, A. R. Palmer, and D. A. Hall, “Amplitude and frequency-modulated stimuli activate common regions of human auditory cortex,” Cerebral Cortex, vol. 13, no. 7, pp. 773–781, 2003.
[34]  Z.-L. Lu, S. J. Williamson, and L. Kaufman, “Behavioral lifetime of human auditory sensory memory predicted by physiological measures,” Science, vol. 258, no. 5088, pp. 1668–1670, 1992.
[35]  Z.-L. Lu, S. J. Williamson, and L. Kaufman, “Human auditory primary and association cortex have differing lifetimes for activation traces,” Brain Research, vol. 572, no. 1-2, pp. 236–241, 1992.
[36]  I. P. J??skel?inen, J. Ahveninen, G. Bonmassar, et al., “Human posterior auditory cortex gates novel sounds to consciousness,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 17, pp. 6809–6814, 2004.
[37]  G. Langner, M. Sams, P. Heil, and H. Schulze, “Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography,” The Journal of Comparative Physiology, vol. 181, no. 6, pp. 665–676, 1997.
[38]  D. A. Hall, A. M. Edmondson-Jones, and J. Fridriksson, “Periodicity and frequency coding in human auditory cortex,” European Journal of Neuroscience, vol. 24, no. 12, pp. 3601–3610, 2006.
[39]  J. Ahveninen, I. P. J??skel?inen, T. Raij et al., “Task-modulated “what” and “where” pathways in human auditory cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 39, pp. 14608–14613, 2006.
[40]  J. D. Warren, B. A. Zielinski, G. G. R. Green, J. P. Rauschecker, and T. D. Griffiths, “Perception of sound-source motion by the human brain,” Neuron, vol. 34, no. 1, pp. 139–148, 2002.
[41]  N. Kopco, S. Huang, J. W. Belliveau, et al., “Neuronal representations of distance in human auditory cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 27, pp. 11019–11024, 2012.
[42]  N. H. Salminen, P. J. C. May, P. Alku, and H. Tiitinen, “A population rate code of auditory space in the human cortex,” PLoS ONE, vol. 4, no. 10, Article ID e7600, 2009.
[43]  J. Obleser, H. Boecker, A. Drzezga et al., “Vowel sound extraction in anterior superior temporal cortex,” Human Brain Mapping, vol. 27, no. 7, pp. 562–571, 2006.
[44]  B. Tian, D. Reser, A. Durham, A. Kustov, and J. P. Rauschecker, “Functional specialization in rhesus monkey auditory cortex,” Science, vol. 292, no. 5515, pp. 290–293, 2001.
[45]  S. G. Lomber and S. Malhotra, “Double dissociation of ‘what’ and ‘where’ processing in auditory cortex,” Nature Neuroscience, vol. 11, no. 5, pp. 609–616, 2008.
[46]  J. P. Rauschecker, “An expanded role for the dorsal auditory pathway in sensorimotor control and integration,” Hearing Research, vol. 271, no. 1-2, pp. 16–25, 2011.
[47]  J. P. Rauschecker, “Processing of complex sounds in the auditory cortex of cat, monkey, and man,” Acta Oto-Laryngologica, vol. 117, no. 532, pp. 34–38, 1997.
[48]  L. de Santis, S. Clarke, and M. M. Murray, “Automatic and intrinsic auditory “what” and “where” processing in humans revealed by electrical neuroimaging,” Cerebral Cortex, vol. 17, no. 1, pp. 9–17, 2006.
[49]  J. Ahveninen, I. P. J??skel?inen, T. Raij et al., “Task-modulated “what” and “where” pathways in human auditory cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 39, pp. 14608–14613, 2006.
[50]  M. Adriani, P. Maeder, R. Meuli et al., “Sound recognition and localization in man: specialized cortical networks and effects of acute circumscribed lesions,” Experimental Brain Research, vol. 153, no. 4, pp. 591–604, 2003.
[51]  S. Clarke, A. Bellmann Thiran, P. Maeder et al., “What and where in human audition: selective deficits following focal hemispheric lesions,” Experimental Brain Research, vol. 147, no. 1, pp. 8–15, 2002.
[52]  J. Ahveninen, S. Huang, A. Nummenmaa, et al., “Evidence for distinct human auditory cortex regions for sound location versus identity processing,” Nature Communications, vol. 4, article 2585, 2013.
[53]  C. Alain, S. R. Arnott, S. Hevenor, S. Graham, and C. L. Grady, “‘What’ and “where” in the human auditory system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 21, pp. 12301–12306, 2001.
[54]  G. Hickok and D. Poeppel, “The cortical organization of speech processing,” Nature Reviews Neuroscience, vol. 8, no. 5, pp. 393–402, 2007.
[55]  J. P. Rauschecker and S. K. Scott, “Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing,” Nature Neuroscience, vol. 12, no. 6, pp. 718–724, 2009.
[56]  C. F. Altmann, M. Henning, M. K. D?ring, and J. Kaiser, “Effects of feature-selective attention on auditory pattern and location processing,” NeuroImage, vol. 41, no. 1, pp. 69–79, 2008.
[57]  C. I. Petkov, X. Kang, K. Alho, O. Bertrand, E. W. Yund, and D. L. Woods, “Attentional modulation of human auditory cortex,” Nature Neuroscience, vol. 7, no. 6, pp. 658–663, 2004.
[58]  D. L. Woods, G. C. Stecker, T. Rinne et al., “Functional maps of human auditory cortex: effects of acoustic features and attention,” PLoS ONE, vol. 4, no. 4, Article ID e5183, 2009.
[59]  S. Da Costa, W. van der Zwaag, L. M. Miller, et al., “Tuning in to sound: frequency-selective attentional filter in human primary auditory cortex,” The Journal of Neuroscience, vol. 33, no. 5, pp. 1858–1863, 2013.
[60]  L. J?ncke, S. Mirzazade, and N. Joni Shah, “Attention modulates activity in the primary and the secondary auditory cortex: a functional magnetic resonance imaging study in human subjects,” Neuroscience Letters, vol. 266, no. 2, pp. 125–128, 1999.
[61]  A. Bidet-Caulet, C. Fischer, J. Besle, P.-E. Aguera, M.-H. Giard, and O. Bertrand, “Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex,” The Journal of Neuroscience, vol. 27, no. 35, pp. 9252–9261, 2007.
[62]  M. H?m?l?inen, R. Hari, R. J. Ilmoniemi, et al., “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Reviews of Modern Physics, vol. 65, no. 2, pp. 413–497, 1993.
[63]  A. Hillebrand and G. R. Barnes, “A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex,” NeuroImage, vol. 16, no. 3, part A, pp. 638–650, 2002.
[64]  A. K. Liu, A. M. Dale, and J. W. Belliveau, “Monte Carlo simulation studies of EEG and MEG localization accuracy,” Human Brain Mapping, vol. 16, no. 1, pp. 47–62, 2002.
[65]  M. G. Woldorff and S. A. Hillyard, “Modulation of early auditory processing during selective listening to rapidly presented tones,” Electroencephalography and Clinical Neurophysiology, vol. 79, no. 3, pp. 170–191, 1991.
[66]  M. G. Woldorff, C. C. Gallen, S. A. Hampson et al., “Modulation of early sensory processing in human auditory cortex during auditory selective attention,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 18, pp. 8722–8726, 1993.
[67]  V. Poghosyan and A. A. Ioannides, “Attention modulates earliest responses in the primary auditory and visual cortices,” Neuron, vol. 58, no. 5, pp. 802–813, 2008.
[68]  Y. Zhang and N. Suga, “Corticofugal amplification of subcortical responses to single tone stimuli in the mustached bat,” Journal of Neurophysiology, vol. 78, no. 6, pp. 3489–3492, 1997.
[69]  N. Suga, E. Gao, Y. Zhang, X. Ma, and J. F. Olsen, “The corticofugal system for hearing: recent progress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 22, pp. 11807–11814, 2000.
[70]  J. A. Winer, “Decoding the auditory corticofugal systems,” Hearing Research, vol. 212, no. 1-2, pp. 1–8, 2006.
[71]  T. W. Picton and S. A. Hillyard, “Human auditory evoked potentials. II. Effects of attention,” Electroencephalography and Clinical Neurophysiology, vol. 36, no. 2, pp. 191–199, 1974.
[72]  A. E. Davis and H. A. Beagley, “Acoustic brainstem responses for clinical use: the effect of attention,” Clinical Otolaryngology & Allied Sciences, vol. 10, no. 6, pp. 311–314, 1985.
[73]  J. F. Connolly, K. Aubry, N. McGillivary, and D. W. Scott, “Human brainstem auditory evoked potentials fail to provide evidence of efferent modulation of auditory input during attentional tasks,” Psychophysiology, vol. 26, no. 3, pp. 292–303, 1989.
[74]  G. C. Galbraith and C. Arroyo, “Selective attention and brainstem frequency-following responses,” Biological Psychology, vol. 37, no. 1, pp. 3–22, 1993.
[75]  G. C. Galbraith, D. M. Olfman, and T. M. Huffman, “Selective attention affects human brain stem frequency-following response,” NeuroReport, vol. 14, no. 5, pp. 735–738, 2003.
[76]  W. D. Hairston, T. R. Letowski, and K. McDowell, “Task-related suppression of the brainstem frequency following response,” PLoS ONE, vol. 8, no. 2, Article ID e55215, 2013.
[77]  M. H. Giard, A. Fort, Y. Mouchetant-Rostaing, and J. Pernier, “Neurophysiological mechanisms of auditory selective attention in humans,” Frontiers in Bioscience, vol. 5, pp. D84–D94, 2000.
[78]  P. T. Michie, E. L. LePage, N. Solowij, M. Haller, and L. Terry, “Evoked otoacoustic emissions and auditory selective attention,” Hearing Research, vol. 98, no. 1-2, pp. 54–67, 1996.
[79]  T. Rinne, J. Pekkola, A. Degerman et al., “Modulation of auditory cortex activation by sound presentation rate and attention,” Human Brain Mapping, vol. 26, no. 2, pp. 94–99, 2005.
[80]  M. L. Andermann, J. Kauram?ki, T. Palom?ki, et al., “Brain state-triggered stimulus delivery: an efficient tool for probing ongoing brain activity,” Open Journal of Neuroscience, vol. 2, p. 5, 2012.
[81]  D. H. O'Connor, M. M. Fukui, M. A. Pinsk, and S. Kastner, “Attention modulates responses in the human lateral geniculate nucleus,” Nature Neuroscience, vol. 5, no. 11, pp. 1203–1209, 2002.
[82]  K. McAlonan, J. Cavanaugh, and R. H. Wurtz, “Guarding the gateway to cortex with attention in visual thalamus,” Nature, vol. 456, no. 7220, pp. 391–394, 2008.
[83]  D. L. Woods, T. J. Herron, A. D. Cateand, et al., “Functional properties of human auditory cortical fields,” Frontiers in Systems Neuroscience, vol. 4, article 155, 2010.
[84]  D. L. Woods, G. C. Stecker, T. Rinne et al., “Functional maps of human auditory cortex: effects of acoustic features and attention,” PLoS ONE, vol. 4, no. 4, Article ID e5183, 2009.
[85]  S. A. Hillyard, R. F. Hink, V. L. Schwent, and T. W. Picton, “Electrical signs of selective attention in the human brain,” Science, vol. 182, no. 4108, pp. 177–180, 1973.
[86]  H. Okamoto, H. Stracke, P. Bermudez, and C. Pantev, “Sound processing hierarchy within human auditory cortex,” Journal of Cognitive Neuroscience, vol. 23, no. 8, pp. 1855–1863, 2011.
[87]  J. Rif, R. Hari, M. S. Hamalainen, and M. Sams, “Auditory attention affects two different areas in the human supratemporal cortex,” Electroencephalography and Clinical Neurophysiology, vol. 79, no. 6, pp. 464–472, 1991.
[88]  J. Ahveninen, M. H?m?l?inen, I. P. J??skel?inen et al., “Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 10, pp. 4182–4187, 2011.
[89]  C. J. McAdams and J. H. R. Maunsell, “Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4,” The Journal of Neuroscience, vol. 19, no. 1, pp. 431–441, 1999.
[90]  M. Sams and R. Salmelin, “Evidence of sharp frequency tuning in the human auditory cortex,” Hearing Research, vol. 75, no. 1-2, pp. 67–74, 1994.
[91]  J. Kauram?ki, I. P. J??skel?inen, and M. Sams, “Selective attention increases both gain and feature selectivity of the human auditory cortex,” PLoS ONE, vol. 2, no. 9, Article ID e909, 2007.
[92]  M. H. Giard, F. Perrin, J. F. Echallier, M. Thevenet, J. C. Froment, and J. Pernier, “Dissociation of temporal and frontal components in the human auditory N1 wave: a scalp current density and dipole model analysis,” Electroencephalography and Clinical Neurophysiology, vol. 92, no. 3, pp. 238–252, 1994.
[93]  J. Kauram?ki, I. P. J??skel?inen, J. L. H?nninen, et al., “Two-stage processing of sounds explains behavioral performance variations due to changes in stimulus contrast and selective attention: an MEG study,” PLoS ONE, vol. 7, no. 10, Article ID e46872, 2012.
[94]  H. Okamoto, H. Stracke, C. H. Wolters, F. Schmael, and C. Pantev, “Attention improves population-level frequency tuning in human auditory cortex,” The Journal of Neuroscience, vol. 27, no. 39, pp. 10383–10390, 2007.
[95]  H. Okamoto, H. Stracke, P. Zwitserlood, L. E. Roberts, and C. Pantev, “Frequency-specific modulation of population-level frequency tuning in human auditory cortex,” BMC Neuroscience, vol. 10, article 1, pp. 1–14, 2009.
[96]  J. Fritz, S. Shamma, M. Elhilali, and D. Klein, “Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex,” Nature Neuroscience, vol. 6, no. 11, pp. 1216–1223, 2003.
[97]  J. B. Fritz, M. Elhilali, and S. A. Shamma, “Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks,” The Journal of Neuroscience, vol. 25, no. 33, pp. 7623–7635, 2005.
[98]  J. Fritz, M. Elhilali, and S. Shamma, “Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex,” Hearing Research, vol. 206, no. 1-2, pp. 159–176, 2005.
[99]  J. B. Fritz, M. Elhilali, S. V. David, and S. A. Shamma, “Does attention play a role in dynamic receptive field adaptation to changing acoustic salience in A1?” Hearing Research, vol. 229, no. 1-2, pp. 186–203, 2007.
[100]  J. B. Fritz, S. V. David, S. Radtke-Schuller, P. Yin, and S. A. Shamma, “Adaptive, behaviorally gated, persistent encoding of task-relevant auditory information in ferret frontal cortex,” Nature Neuroscience, vol. 13, no. 8, pp. 1011–1019, 2010.
[101]  J. Lee and J. H. R. Maunsell, “A normalization model of attentional modulation of single unit responses,” PLoS ONE, vol. 4, no. 2, Article ID e4651, 2009.
[102]  T. Womelsdorf, K. Anton-Erxleben, F. Pieper, and S. Treue, “Dynamic shifts of visual receptive fields in cortical area MT by spatial attention,” Nature Neuroscience, vol. 9, no. 9, pp. 1156–1160, 2006.
[103]  N. Mesgarani and E. F. Chang, “Selective cortical representation of the attended speaker in multi-talker speech perception,” Nature, vol. 485, pp. 233–237, 2012.
[104]  B. G. Shinn-Cunningham, “Learning reverberation: considerations for spatial auditory displays,” in Proceedings of the International Conference on Auditory Display (ICAD '00), Georgia Institute of Technology, Atlanta, Ga, USA, 2000.
[105]  D. H. Mershon, W. L. Ballenger, A. D. Little, P. L. McMurtry, and J. L. Buchanan, “Effects of room reflectance and background noise on perceived auditory distance,” Perception, vol. 18, no. 3, pp. 403–416, 1989.
[106]  R. K. Clifton, R. L. Freyman, R. Y. Litovsky, and D. McCall, “Listeners' expectations about echoes can raise or lower echo threshold,” The Journal of the Acoustical Society of America, vol. 95, no. 3, pp. 1525–1533, 1994.
[107]  R. L. Freyman, R. K. Clifton, and R. Y. Litovsky, “Dynamic processes in the precedence effect,” The Journal of the Acoustical Society of America, vol. 90, no. 2, part 1, pp. 874–884, 1991.
[108]  G. H. Recanzone, “Rapidly induced auditory plasticity: the ventriloquism aftereffect,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 3, pp. 869–875, 1998.
[109]  J. Lewald, “Rapid adaptation to auditory-visual spatial disparity,” Learning & Memory, vol. 9, no. 5, pp. 268–278, 2002.
[110]  N. Kop?o, I.-F. Lin, B. G. Shinn-Cunningham, and J. M. Groh, “Reference frame of the ventriloquism aftereffect,” The Journal of Neuroscience, vol. 29, no. 44, pp. 13809–13814, 2009.
[111]  P. Bruns, C. Spence, and B. R?der, “Tactile recalibration of auditory spatial representations,” Experimental Brain Research, vol. 209, no. 3, pp. 333–344, 2011.
[112]  P. Bertelson, J. Vroomen, B. de Gelder, and J. Driver, “The ventriloquist effect does not depend on the direction of deliberate visual attention,” Perception & Psychophysics, vol. 62, no. 2, pp. 321–332, 2000.
[113]  N. M. Weinberger, “Auditory associative memory and representational plasticity in the primary auditory cortex,” Hearing Research, vol. 229, no. 1-2, pp. 54–68, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133