全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Brain Reorganization following Intervention in Children with Congenital Hemiplegia: A Systematic Review

DOI: 10.1155/2013/356275

Full-Text   Cite this paper   Add to My Lib

Abstract:

Noninvasive rehabilitation strategies for children with unilateral cerebral palsy are routinely used to improve hand motor function, activity, and participation. Nevertheless, the studies exploring their effects on brain structure and function are very scarce. Recently, structural neuroplasticity was demonstrated in adult poststroke patients, in response to neurorehabilitation. Our purpose is to review current evidence on the effects of noninvasive intervention strategies on brain structure or function, in children with unilateral cerebral palsy. The main literature databases were searched up to October 2013. We included studies where the effects of upper limb training were evaluated at neurofunctional and/or neurostructural levels. Only seven studies met our selection criteria; selected studies were case series, six using the intervention of the constraint-induced movement therapy (CIMT) and one used virtual reality therapy (VR). CIMT and VR seem to produce measurable neuroplastic changes in sensorimotor cortex associated with enhancement of motor skills in the affected limb. However, the level of evidence is limited, due to methodological weaknesses and small sample sizes of available studies. Well-designed and larger experimental studies, in particular RCTs, are needed to strengthen the generalizability of the findings and to better understand the mechanism of intervention-related brain plasticity in children with brain injury. 1. Introduction Unilateral cerebral palsy (U-CP) is the most common type of cerebral palsy (CP), with an incidence of 1 in 1000 live-births [1]. Typically, the upper limb (UL) is more involved than the lower, with impairments of spasticity, sensation, and reduced strength. Effective use of the arm and hand to reach, grasp, release, and manipulate objects is often compromised. Children with hemiplegia usually have the intellectual capacity to attend regular school; however, impaired arm function restricts their participation in educational, leisure, and later vocational roles [2]. U-CP can result from a wide variety of brain lesions, with respect to the timing of insults (acquired during the pre-, peri- or postnatal period), and the type of structural pathology (brain malformations, periventricular lesions, and corticosubcortical lesions) [3]. U-CP often leads to delays in motor development or deconditioning of the affected limb, as individuals are inclined to functional compensation with the intact limb rather than attempting to use the involved limb [4]; this may result in suppression of development of cortical representation

References

[1]  http://www.cerebralpalsysource.com/.
[2]  L. Sakzewski, J. Ziviani, and R. Boyd, “Systematic review and meta-analysis of therapeutic management of upper-limb dysfunction in children with congenital hemiplegia,” Pediatrics, vol. 123, no. 6, pp. e1111–e1122, 2009.
[3]  M. Staudt, W. Grodd, C. Gerloff, M. Erb, J. Stitz, and I. Kr?geloh-Mann, “Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study,” Brain, vol. 125, no. 10, pp. 2222–2237, 2002.
[4]  J. Held, “Recovery of function after brain damage: theoretical implications for therapeutic intervention,” in Movement Science: Foundations for Physical Therapy in Rehabilitation, J. H. Carr and R. B. Shepherd, Eds., pp. 189–211, Aspen, Oxford, UK, 2nd edition, 2000.
[5]  P. Cicinelli, R. Traversa, and P. M. Rossini, “Post-stroke reorganization of brain motor output to the hand: a 2–4 month follow-up with focal magnetic transcranial stimulation,” Electroencephalography and Clinical Neurophysiology, vol. 105, no. 6, pp. 438–450, 1997.
[6]  J. Liepert, H. Bauder, W. H. R. Miltner, E. Taub, and C. Weiller, “Treatment-induced cortical reorganization after stroke in humans,” Stroke, vol. 31, no. 6, pp. 1210–1216, 2000.
[7]  J. A. Eyre, “Corticospinal tract development and its plasticity after perinatal injury,” Neuroscience and Biobehavioral Reviews, vol. 31, no. 8, pp. 1136–1149, 2007.
[8]  M. Staudt, C. Gerloff, W. Grodd, H. Holthausen, G. Niemann, and I. Kr?geloh-Mann, “Reorganization in congenital hemiparesis acquired at different gestational ages,” Annals of Neurology, vol. 56, no. 6, pp. 854–863, 2004.
[9]  A. Guzzetta, P. Bonanni, L. Biagi et al., “Reorganisation of the somatosensory system after early brain damage,” Clinical Neurophysiology, vol. 118, no. 5, pp. 1110–1121, 2007.
[10]  M. V. Johnston, “Clinical disorders of brain plasticity,” Brain and Development, vol. 26, no. 2, pp. 73–80, 2004.
[11]  R. Chen, L. G. Cohen, and M. Hallett, “Nervous system reorganization following injury,” Neuroscience, vol. 111, no. 4, pp. 761–773, 2002.
[12]  L. V. Gauthier, E. Taub, C. Perkins, M. Ortmann, V. W. Mark, and G. Uswatte, “Remodeling the brain: plastic structural brain changes produced by different motor therapies after stroke,” Stroke, vol. 39, no. 5, pp. 1520–1525, 2008.
[13]  T. L. Sutcliffe, W. J. Logan, and D. L. Fehlings, “Pediatric constraint-induced movement therapy is associated with increased contralateral cortical activity on functional magnetic resonance imaging,” Journal of Child Neurology, vol. 24, no. 10, pp. 1230–1235, 2009.
[14]  C. Sterling, E. Taub, D. Davis et al., “Structural neuroplastic change after constraint-induced movement therapy in children with cerebral palsy,” Pediatrics, vol. 131, no. 5, pp. e1664–e1669, 2013.
[15]  S. M. Cope, X. C. Liu, M. D. Verber, C. Cayo, S. Rao, and J. C. Tassone, “Upper limb function and brain reorganization after constraint-induced movement therapy in children with hemiplegia,” Developmental Neurorehabilitation, vol. 13, no. 1, pp. 19–30, 2010.
[16]  M. R. Golomb, B. C. McDonald, S. J. Warden et al., “In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy,” Archives of Physical Medicine and Rehabilitation, vol. 91, no. 1, pp. 1.e1–8.e1, 2010.
[17]  H. Juenger, M. Linder-Lucht, M. Walther, S. Berweck, V. Mall, and M. Staudt, “Cortical neuromodulation by constraint-induced movement therapy in congenital hemiparesis: an fMRI study,” Neuropediatrics, vol. 38, no. 3, pp. 130–136, 2007.
[18]  M. Walther, H. Juenger, N. Kuhnke et al., “Motor cortex plasticity in ischemic perinatal stroke: a transcranial magnetic stimulation and functional MRI study,” Pediatric Neurology, vol. 41, no. 3, pp. 171–178, 2009.
[19]  H. Juenger, N. Kuhnke, C. Braun et al., “Two types of exercise-induced neuroplasticity in congenital hemiparesis: a transcranial magnetic stimulation, functional MRI, and magnetoencephalography study,” Developmental Medicine and Child Neurology, vol. 55, no. 10, pp. 941–951, 2013.
[20]  E. Taub, A. Griffin, J. Nick, K. Gammons, G. Uswatte, and C. R. Law, “Pediatric CI therapy for stroke-induced hemiparesis in young children,” Developmental Neurorehabilitation, vol. 10, no. 1, pp. 3–18, 2007.
[21]  A. Eliasson, L. Krumlinde-Sundholm, K. Shaw, and C. Wang, “Effects of oncstraint-induced movement therapy in young children with hemiplegic cerebral palsy: an adapted model,” Developmental Medicine and Child Neurology, vol. 47, no. 4, pp. 266–275, 2005.
[22]  M. Leonardi and A. Martinuzzi, “ICF and ICF-CY for an innovative holistic approach to persons with chronic conditions,” Disability and Rehabilitation, vol. 31, supplement 1, pp. S83–S87, 2009.
[23]  D. L. Sackett, W. S. Richardson, W. Rosenberg, and R. B. Haynes, Eds., Evidence-Based Medicine: How to Practice and Teach EBM, Churchill Livingstone, New York, NY, USA, 2nd edition, 2000.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413