全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Improved Method for the Quantification of Motility in Glia and Other Morphologically Complex Cells

DOI: 10.1155/2013/853727

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cells such as astrocytes and radial glia with many densely ramified, fine processes pose particular challenges for the quantification of structural motility. Here we report the development of a method to calculate a motility index for individual cells with complex, dynamic morphologies. This motility index relies on boxcar averaging of the difference images generated by subtraction of images collected at consecutive time points. An image preprocessing step involving 2D projection, edge detection, and dilation of the raw images is first applied in order to binarize the images. The boxcar averaging of difference images diminishes the impact of artifactual pixel fluctuations while accentuating the group-wise changes in pixel values which are more likely to represent real biological movement. Importantly, this provides a value that correlates with mean process elongation and retraction rates without requiring detailed reconstructions of very complex cells. We also demonstrate that additional increases in the sensitivity of the method can be obtained by denoising images using the temporal frequency power spectra, based on the fact that rapid intensity fluctuations over time are mainly due to imaging artifact. The MATLAB programs implementing these motility analysis methods, complete with user-friendly graphical interfaces, have been made publicly available for download. 1. Introduction The development of advanced imaging methods has revealed that living cells exhibit highly dynamic structural remodeling [1, 2]. The rate and structural details of cellular motility can change over development or in response to the environment in ways that reveal important details about cellular signaling mechanisms [3–5]. Useful commercial and public domain programs are available to identify and measure the movements of relatively large cell structures like amoeboid pseudopodia [6–8] as well as fine features like growth cone filopodia [9], astrocytic protrusions [10], and dendritic spines [11, 12]. Analysis of these kinds of sparsely distributed cellular protrusions may be amenable to the use of image skeletonization or active contour tracing to select the features of interest and to track end-tips for motility analysis. An alternative approach is to measure perimeter shape changes of an entire cell by analyzing the difference between an original image and an “eroded” image from which all fine processes have been filtered away [10]. However, if the features of interest are very dense and spindly, overlapping and oriented in many directions as in the case of astrocytes and

References

[1]  J. W. Lichtman and S. E. Fraser, “The neuronal naturalist: watching neurons in their native habitat,” Nature Neuroscience, vol. 4, supplement 1, pp. 1215–1220, 2001.
[2]  C. M. Niell and S. J. Smith, “Live optical imaging of nervous system development,” Annual Review of Physiology, vol. 66, pp. 771–798, 2004.
[3]  J. Y. Hua and S. J. Smith, “Neural activity and the dynamics of central nervous system development,” Nature Neuroscience, vol. 7, no. 4, pp. 327–332, 2004.
[4]  J. Lippman and A. Dunaevsky, “Dendritic spine morphogenesis and plasticity,” Journal of Neurobiology, vol. 64, no. 1, pp. 47–57, 2005.
[5]  A. Holtmaat and K. Svoboda, “Experience-dependent structural synaptic plasticity in the mammalian brain,” Nature Reviews Neuroscience, vol. 10, no. 9, pp. 647–658, 2009.
[6]  D. Dormann, T. Libotte, C. J. Weijer, and T. Bretschneider, “Simultaneous quantification of cell motility and protein-membrane-association using active contours,” Cell Motility and the Cytoskeleton, vol. 52, no. 4, pp. 221–230, 2002.
[7]  M. Machacek and G. Danuser, “Morphodynamic profiling of protrusion phenotypes,” Biophysical Journal, vol. 90, no. 4, pp. 1439–1452, 2006.
[8]  L. Bosgraaf and P. J. M. van Haastert, “Quimp3, an automated pseudopod-tracking algorithm,” Cell Adhesion and Migration, vol. 4, no. 1, pp. 46–55, 2010.
[9]  S. Costantino, C. B. Kent, A. G. Godin, T. E. Kennedy, P. W. Wiseman, and A. E. Fournier, “Semi-automated quantification of filopodial dynamics,” Journal of Neuroscience Methods, vol. 171, no. 1, pp. 165–173, 2008.
[10]  M. Lavialle, G. Aumann, E. Anlauf, F. Pr?ls, M. Arpin, and A. Derouiche, “Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 31, pp. 12915–12919, 2011.
[11]  A. Dunaevsky, A. Tashiro, A. Majewska, C. Mason, and R. Yuste, “Developmental regulation of spine motility in the mammalian central nervous system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 23, pp. 13438–13443, 1999.
[12]  M. Fischer, S. Kaech, U. Wagner, H. Brinkhaus, and A. Matus, “Glutamate receptors regulate actin-based plasticity in dendritic spines,” Nature Neuroscience, vol. 3, no. 9, pp. 887–894, 2000.
[13]  M. Iino, K. Goto, W. Kakegawa et al., “Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia,” Science, vol. 292, no. 5518, pp. 926–929, 2001.
[14]  H. Nishida and S. Okabe, “Direct astrocytic contacts regulate local maturation of dendritic spines,” Journal of Neuroscience, vol. 27, no. 2, pp. 331–340, 2007.
[15]  M. Tremblay, V. Fugère, J. Tsui et al., “Regulation of radial glial motility by visual experience,” Journal of Neuroscience, vol. 29, no. 45, pp. 14066–14076, 2009.
[16]  P. D. Nieuwkoop and J. Faber, Normal Table of Xenopus Laevis (Daudin), North-Holland Publishing, Amsterdam, The Netherlands, 1956.
[17]  E. S. Ruthazer, A. Schohl, N. Schwartz, A. Tavakoli, M. Tremblay, and H. T. Cline, “Bulk electroporation of retinal ganglion cells in live Xenopus tadpoles,” Cold Spring Harbor Protocols, 2013.
[18]  C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH image to imageJ: 25 years of image analysis,” Nature Methods, vol. 9, pp. 671–675, 2012.
[19]  P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Transactions on Image Processing, vol. 7, no. 1, pp. 27–41, 1998.
[20]  J. M. Guberman, A. Fay, J. Dworkin, N. S. Wingreen, and Z. Gitai, “PSICIC: noise and asymmetry in bacterial division revealed by computational image analysis at sub-pixel resolution,” PLoS Computational Biology, vol. 4, no. 11, Article ID e1000233, 2008.
[21]  J. Huisken, J. Swoger, F. del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science, vol. 305, no. 5686, pp. 1007–1009, 2004.
[22]  T. A. Planchon, L. Gao, D. E. Milkie et al., “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nature Methods, vol. 8, no. 5, pp. 417–423, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413