全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Enhanced Expression of NR2B Subunits of NMDA Receptors in the Inherited Glaucomatous DBA/2J Mouse Retina

DOI: 10.1155/2013/670254

Full-Text   Cite this paper   Add to My Lib

Abstract:

DBA/2J mouse has been used as a model for spontaneous secondary glaucoma. Here, we investigated changes in expression of NMDA receptor (NMDAR) subunits and Cdk5/p35/NMDAR signaling in retinas of DBA/2J mice using Western blot technique. The protein levels of NR1 and NR2A subunits in retinas of DBA/2J mice at all ages (6–12 months) were not different from those in age-matched C57BL/6 mice. In contrast, the protein levels of NR2B subunits, in addition to age-dependent change, significantly increased with elevated intraocular pressure (IOP) in DBA/2J mice at 6 and 9 months as compared with age-matched controls. Moreover, expression of Cdk5, p35 and ratio of p-NR2AS1232/NR2A progressively increased with time in both strains, suggestive of activated Cdk5/p35 signaling pathway. However, the changes in these proteins were in the same levels in both strain mice, except a significant increase of p35 proteins at 6 months in DBA/2J mice. Meanwhile, the protein levels of Brn-3a, a retinal ganglion cell (RGC) maker, remarkably decreased at 9–12 months in DBA/2J mice, which was in parallel with the changes of NR2B expression. Our results suggest that elevated IOP-induced increase in expression of NR2B subunits of NMDARs may be involved in RGC degeneration of DBA/2J mice. 1. Introduction Glaucoma, the second leading cause of blindness worldwide, is a neurodegenerative disease characterized by apoptotic death of retinal ganglion cells (RGCs) and progressive visual field loss [1, 2], which is often associated with high intraocular pressure (IOP). Whilst the mechanisms of RGC death in glaucoma still remain a mystery, glutamate excitotoxicity triggered by overactivation of the N-methyl-D-aspartate receptors (NMDARs) may be a potential risk factor for retinal malfunction in glaucoma [3–5]. Indeed, delivery of NMDA channel blockers has been shown to effectively reduce RGC apoptosis in experimental rat glaucoma models [3, 6–8]. Our recent work also showed that cyclin-dependent kinase 5 (Cdk5)/p35-induced elevation of phosphorylated NR2A subunit of NMDARs at S1232 site (p-NR2AS1232) may contribute to RGC apoptotic death in experimental glaucomatous rats [9]. DBA/2J mouse is a spontaneous model of glaucomatous neurodegeneration, which develops a progressive form of pigmentary angle-closure glaucoma [10–13]. In these mice, IOPs become elevated by 6 months of age, and continued intraocular hypertension results in progressive RGC degeneration [12–17]. This is similar to what is observed in primary open angle glaucoma, which makes the DBA/2J mice represent a useful model to study

References

[1]  L. Guo, S. E. Moss, R. A. Alexander, R. R. Ali, F. W. Fitzke, and M. F. Cordeiro, “Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix,” Investigative Ophthalmology & Visual Science, vol. 46, no. 1, pp. 175–182, 2005.
[2]  R. A. Hitchings, “Selective ganglion cell death in glaucoma,” British Journal of Ophthalmology, vol. 84, no. 7, pp. 678–679, 2000.
[3]  L. Guo, T. E. Salt, A. Maass et al., “Assessment of neuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cell apoptosis in vivo,” Investigative Ophthalmology & Visual Science, vol. 47, no. 2, pp. 626–633, 2006.
[4]  L. A. Levin, “Retinal ganglion cells and neuroprotection for glaucoma,” Survey of Ophthalmology, vol. 48, no. 2, supplement, pp. S21–S24, 2003.
[5]  M. Seki and S. A. Lipton, “Targeting excitotoxic/free radical signaling pathways for therapeutic intervention in glaucoma,” Progress in Brain Research, vol. 173, pp. 495–510, 2008.
[6]  J. I. Calzada, B. E. Jones, P. A. Netland, and D. A. Johnson, “Glutamate-induced excitotoxicity in retina: neuroprotection with receptor antagonist, dextromethorphan, but not with calcium channel blockers,” Neurochemical Research, vol. 27, no. 1-2, pp. 79–88, 2002.
[7]  W. A. Hare, E. WoldeMussie, R. N. Weinreb et al., “Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, II: structural measures,” Investigative Ophthalmology & Visual Science, vol. 45, no. 8, pp. 2640–2651, 2004.
[8]  E. WoldeMussie, E. Yoles, M. Schwartz, G. Ruiz, and L. A. Wheeler, “Neuroprotective effect of memantine in different retinal injury models in rats,” Journal of Glaucoma, vol. 11, no. 6, pp. 474–480, 2002.
[9]  J. Chen, Y. Miao, X. H. Wang, and Z. Wang, “Elevation of p-NR2AS1232 by Cdk5/p35 contributes to retinal ganglion cell apoptosis in a rat experimental glaucoma model,” Neurobiology of Disease, vol. 43, no. 2, pp. 455–464, 2011.
[10]  M. G. Anderson, R. S. Smith, N. L. Hawes et al., “Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice,” Nature Genetics, vol. 30, no. 1, pp. 81–85, 2002.
[11]  S. W. M. John, R. S. Smith, O. V. Savinova et al., “Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice,” Investigative Ophthalmology & Visual Science, vol. 39, no. 6, pp. 951–962, 1998.
[12]  R. T. Libby, M. G. Anderson, I. H. Pang et al., “Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration,” Visual Neuroscience, vol. 22, no. 5, pp. 637–648, 2005.
[13]  C. L. Schlamp, Y. Li, J. A. Dietz, K. T. Janssen, and R. W. Nickells, “Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric,” BMC Neuroscience, vol. 7, article 66, 2006.
[14]  B. P. Buckingham, D. M. Inman, W. Lambert et al., “Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma,” The Journal of Neuroscience, vol. 28, no. 11, pp. 2735–2744, 2008.
[15]  F. Schuettauf, K. Quinto, R. Naskar, and D. Zurakowski, “Effects of anti-glaucoma medications on gangion cell survival: the DBA/2J mouse model,” Vision Research, vol. 42, no. 20, pp. 2333–2337, 2002.
[16]  F. Schuettauf, R. Rejdak, M. Walski et al., “Retinal neurodegeneration in the DBA/2J mouse—a model for ocular hypertension,” Acta Neuropathologica, vol. 107, no. 4, pp. 352–358, 2004.
[17]  D. Reichstein, L. Ren, T. Filippopoulos, T. Mittag, and J. Danias, “Apoptotic retinal ganglion cell death in the DBA/2 mouse model of glaucoma,” Experimental Eye Research, vol. 84, no. 1, pp. 13–21, 2007.
[18]  W. K. Ju, K. Y. Kim, M. Angert et al., “Memantine blocks mitochondrial OPA1 and cytochrome c release and subsequent apoptotic cell death in glaucomatous retina,” Investigative Ophthalmology & Visual Science, vol. 50, no. 2, pp. 707–716, 2009.
[19]  F. Schuettauf, S. Thaler, S. Bolz et al., “Alterations of amino acids and glutamate transport in the DBA/2J mouse retina; possible clues to degeneration,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 245, no. 8, pp. 1157–1168, 2007.
[20]  M. Ji, Y. Miao, L. D. Dong et al., “Group I mGluR-mediated inhibition of Kir channels contributes to retinal muller cell gliosis in a rat chronic ocular hypertension model,” The Journal of Neuroscience, vol. 32, no. 37, pp. 12744–12755, 2012.
[21]  X. G. Luo, K. Chiu, F. H. S. Lau, V. W. H. Lee, K. K. L. Yung, and K. F. So, “The selective vulnerability of retinal ganglion cells in rat chronic ocular hypertension model at early phase,” Cellular and Molecular Neurobiology, vol. 29, no. 8, pp. 1143–1151, 2009.
[22]  R. Naskar, C. K. Vorwerk, and E. B. Dreyer, “Concurrent downregulation of a glutamate transporter and receptor in glaucoma,” Investigative Ophthalmology & Visual Science, vol. 41, no. 7, pp. 1940–1944, 2000.
[23]  S. T. Li and J. G. Ju, “Functional roles of synaptic and extrasynaptic NMDA receptors in physiological and pathological neuronal activities,” Current Drug Targets, vol. 13, no. 2, pp. 207–221, 2012.
[24]  G. E. Hardingham, Y. Fukunaga, and H. Bading, “Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways,” Nature Neuroscience, vol. 5, no. 5, pp. 405–414, 2002.
[25]  A. M. Kaufman, A. J. Milnerwood, M. D. Sepers et al., “Opposing roles of synaptic and extrasynaptic NMDA receptor signaling in cocultured striatal and cortical neurons,” The Journal of Neuroscience, vol. 32, no. 12, pp. 3992–4003, 2012.
[26]  G. E. Hardingham and H. Bading, “Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders,” Nature Reviews Neuroscience, vol. 11, no. 10, pp. 682–696, 2010.
[27]  S. Li, M. Jin, T. Koeglsperger, N. E. Shepardson, G. M. Shankar, and D. J. Selkoe, “Soluble A β oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors,” The Journal of Neuroscience, vol. 31, no. 18, pp. 6627–6638, 2011.
[28]  R. R?nicke, M. Mikhaylova, S. R?nicke et al., “Early neuronal dysfunction by amyloid β oligomers depends on activation of NR2B-containing NMDA receptors,” Neurobiology of Aging, vol. 32, no. 12, pp. 2219–2228, 2011.
[29]  C. Tackenberg, S. Grinschgl, A. Trutzel et al., “NMDA receptor subunit composition determines beta-amyloid-induced neurodegeneration and synaptic loss,” Cell Death and Disease, vol. 4, p. e608, 2013.
[30]  A. Frasca, M. Aalbers, F. Frigerio et al., “Misplaced NMDA receptors in epileptogenesis contribute to excitotoxicity,” Neurobiology of Disease, vol. 43, no. 2, pp. 507–515, 2011.
[31]  J. Zhang and J. S. Diamond, “Subunit- and pathway-specific localization of NMD a receptors and scaffolding proteins at ganglion cell synapses in rat retina,” The Journal of Neuroscience, vol. 29, no. 13, pp. 4274–4286, 2009.
[32]  S. Zhang, L. Edelmann, J. Liu, J. E. Crandall, and M. A. Morabito, “Cdk5 regulates the phosphorylation of tyrosine 1472 NR2B and the surface expression of NMDA receptors,” The Journal of Neuroscience, vol. 28, no. 2, pp. 415–424, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133