全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bidirectional Microglia-Neuron Communication in the Healthy Brain

DOI: 10.1155/2013/456857

Full-Text   Cite this paper   Add to My Lib

Abstract:

Unlike other resident neural cells that are of neuroectodermal origin, microglia are resident neural cells of mesodermal origin. Traditionally recognized for their immune functions during disease, new roles are being attributed to these cells in the development and maintenance of the central nervous system (CNS) including specific communication with neurons. In this review, we highlight some of the recent findings on the bidirectional interaction between neurons and microglia. We discuss these interactions along two lines. First, we review data that suggest that microglial activity is modulated by neuronal signals, focusing on evidence that (i) neurons are capable of regulating microglial activation state and influence basal microglial activities; (ii) classic neurotransmitters affect microglial behavior; (iii) chemotactic signals attract microglia during acute neuronal injury. Next, we discuss some of the recent data on how microglia signal to neurons. Signaling mechanisms include (i) direct physical contact of microglial processes with neuronal elements; (ii) microglial regulation of neuronal synapse and circuit by fractalkine, complement, and DAP12 signaling. In addition, we discuss the use of microglial depletion strategies in studying the role of microglia in neuronal development and synaptic physiology. Deciphering the mechanisms of bidirectional microglial-neuronal communication provides novel insights in understanding microglial function in both the healthy and diseased brain. 1. Introduction Microglia comprise a unique subset of glial cells as the resident macrophages of the central nervous system (CNS). Although their developmental origin has been debated for several decades, the general contemporary consensus is that microglia originate from two sources to populate the CNS: an early source in the embryonic yolk sac and a later source from myeloid progenitors that invade the CNS during embryonic and postnatal development. Subsequent to this early colonization, the resident microglial population remains stable and is maintained through adulthood [1–3]. Traditionally, microglia were studied for their role as pathologically responsive cells with virtually no interest in their functions in the healthy brain. However, given their presence in various species from the invertebrate leech to advanced mammals, as well as their emergence during early development, their functions cannot simply be restricted to pathological settings [4]. The last decade has witnessed a dramatic increase in microglia studies in the healthy brain. These studies suggest an

References

[1]  F. Ginhoux, M. Greter, M. Leboeuf et al., “Fate mapping analysis reveals that adult microglia derive from primitive macrophages,” Science, vol. 330, no. 6005, pp. 841–845, 2010.
[2]  F. Ginhoux, S. Lim, G. Hoeffel, D. Low, and T. Huber, “Origin and differentiation of microglia,” Frontiers in Cellular Neuroscience, vol. 7, p. 45, 2013.
[3]  M. Greter and M. Merad, “Regulation of microglia development and homeostasis,” Glia, vol. 61, no. 1, pp. 121–127, 2013.
[4]  K. Helmut, U. Hanisch, M. Noda, and A. Verkhratsky, “Physiology of microglia,” Physiological Reviews, vol. 91, no. 2, pp. 461–553, 2011.
[5]  K. Biber, J. Vinet, and H. W. G. M. Boddeke, “Neuron-microglia signaling: chemokines as versatile messengers,” Journal of Neuroimmunology, vol. 198, no. 1-2, pp. 69–74, 2008.
[6]  A. H. de Haas, H. R. J. Van Weering, E. K. De Jong, H. W. G. M. Boddeke, and K. P. H. Biber, “Neuronal chemokines: versatile messengers in central nervous system cell interaction,” Molecular Neurobiology, vol. 36, no. 2, pp. 137–151, 2007.
[7]  X. J. Wang, M. Ye, Y. H. Zhang, and S. D. Chen, “CD200-CD200R regulation of microglia activation in the pathogenesis of Parkinson's disease,” Journal of Neuroimmune Pharmacology, vol. 2, no. 3, pp. 259–264, 2007.
[8]  R. M. Hoek, S. R. Ruuls, C. A. Murphy et al., “Down-regulation of the macrophage lineage through interaction with OX2 (CD200),” Science, vol. 290, no. 5497, pp. 1768–1771, 2000.
[9]  C. Broderick, R. M. Hoek, J. V. Forrester, J. Liversidge, J. D. Sedgwick, and A. D. Dick, “Constitutive retinal CD200 expression regulates resident microglia and activation state of inflammatory cells during experimental autoimmune uveoretinitis,” American Journal of Pathology, vol. 161, no. 5, pp. 1669–1677, 2002.
[10]  A. D. Dick, D. Carter, M. Robertson et al., “Control of myeloid activity during retinal inflammation,” Journal of Leukocyte Biology, vol. 74, no. 2, pp. 161–166, 2003.
[11]  A. E. Cardona, E. P. Pioro, M. E. Sasse et al., “Control of microglial neurotoxicity by the fractalkine receptor,” Nature Neuroscience, vol. 9, no. 7, pp. 917–924, 2006.
[12]  K. J. Liang, J. E. Lee, Y. D. Wang et al., “Regulation of dynamic behavior of retinal microglia by CX3CR1 signaling,” Investigative Ophthalmology and Visual Science, vol. 50, no. 9, pp. 4444–4451, 2009.
[13]  E. D. Ponomarev, T. Veremeyko, N. Barteneva, A. M. Krichevsky, and H. L. Weiner, “MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway,” Nature Medicine, vol. 17, no. 1, pp. 64–70, 2011.
[14]  K. I. Mosher, R. H. Andres, T. Fukuhara, et al., “Neural progenitor cells regulate microglia functions and activity,” Nature Neuroscience, vol. 15, no. 11, pp. 1485–1487, 2012.
[15]  H. Wake, A. J. Moorhouse, S. Jinno, S. Kohsaka, and J. Nabekura, “Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals,” Journal of Neuroscience, vol. 29, no. 13, pp. 3974–3980, 2009.
[16]  M. E. Tremblay, R. L. Lowery, and A. K. Majewska, “Microglial interactions with synapses are modulated by visual experience,” PLoS Biology, vol. 8, no. 11, Article ID e1000527, 2010.
[17]  Y. Li, X. F. Du, C. S. Liu, Z. L. Wen, and J. L. Du, “Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo,” Developmental Cell, vol. 23, no. 6, pp. 1189–1202, 2012.
[18]  A. Nimmerjahn, F. Kirchhoff, and F. Helmchen, “Neuroscience: resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo,” Science, vol. 308, no. 5726, pp. 1314–1318, 2005.
[19]  T. Chen, K. Koga, X. Li, and M. Zhuo, “Spinal microglial motility is independent of neuronal activity and plasticity in adult mice,” Molecular Pain, vol. 6, p. 19, 2010.
[20]  L. J. Wu and M. Zhuo, “Resting microglial motility is independent of synaptic plasticity in mammalian brain,” Journal of Neurophysiology, vol. 99, no. 4, pp. 2026–2032, 2008.
[21]  A. M. Fontainhas, M. Wang, K. J. Liang et al., “Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission,” PLoS ONE, vol. 6, no. 1, Article ID e15973, 2011.
[22]  W. Sun, E. McConnell, J. F. Pare, et al., “Glutamate-dependent neuroglial calcium signaling differs between young and adult brain,” Science, vol. 339, no. 6116, pp. 197–200, 2013.
[23]  G. J. Liu, R. Nagarajah, R. B. Banati, and M. R. Bennett, “Glutamate induces directed chemotaxis of microglia,” European Journal of Neuroscience, vol. 29, no. 6, pp. 1108–1118, 2009.
[24]  G. Burnstock, U. Krügel, M. P. Abbracchio, and P. Illes, “Purinergic signalling: from normal behaviour to pathological brain function,” Progress in Neurobiology, vol. 95, no. 2, pp. 229–274, 2011.
[25]  K. Inoue, “Purinergic systems in microglia,” Cellular and Molecular Life Sciences, vol. 65, no. 19, pp. 3074–3080, 2008.
[26]  D. Ferrari, M. Villalba, P. Chiozzi, S. Falzoni, P. Ricciardi-Castagnoli, and F. Di Virgilio, “Mouse microglial cells express a plasma membrane pore gated by extracellular ATP,” Journal of Immunology, vol. 156, no. 4, pp. 1531–1539, 1996.
[27]  D. Ferrari, P. Chiozzi, S. Falzoni et al., “ATP-mediated cytotoxicity in microglial cells,” Neuropharmacology, vol. 36, no. 9, pp. 1295–1301, 1997.
[28]  S. Honda, Y. Sasaki, K. Ohsawa et al., “Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors,” Journal of Neuroscience, vol. 21, no. 6, pp. 1975–1982, 2001.
[29]  D. Davalos, J. Grutzendler, G. Yang et al., “ATP mediates rapid microglial response to local brain injury in vivo,” Nature Neuroscience, vol. 8, no. 6, pp. 752–758, 2005.
[30]  L. Wu, K. I. Vadakkan, and M. Zhuo, “ATP-induced chemotaxis of microglial processes requires P2Y receptor-activated initiation of outward potassium currents,” GLIA, vol. 55, no. 8, pp. 810–821, 2007.
[31]  D. Kurpius, E. P. Nolley, and M. E. Dailey, “Purines induce directed migration and rapid homing of microglia to injured pyramidal neurons in developing hippocampus,” GLIA, vol. 55, no. 8, pp. 873–884, 2007.
[32]  P. Dibaj, F. Nadrigny, H. Steffens et al., “NO mediates microglial response to acute spinal cord injury under ATP control in vivo,” GLIA, vol. 58, no. 9, pp. 1133–1144, 2010.
[33]  F. Peri and C. Nüsslein-Volhard, “Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo,” Cell, vol. 133, no. 5, pp. 916–927, 2008.
[34]  Y. Duan, C. L. Sahley, and K. J. Muller, “ATP and NO dually control migration of microglia to nerve lesions,” Developmental Neurobiology, vol. 69, no. 1, pp. 60–72, 2009.
[35]  S. E. Haynes, G. Hollopeter, G. Yang et al., “The P2Y12 receptor regulates microglial activation by extracellular nucleotides,” Nature Neuroscience, vol. 9, no. 12, pp. 1512–1519, 2006.
[36]  K. F?rber, S. Markworth, U. Pannasch et al., “The ectonucleotidase cd39/ENTPDase1 modulates purinergic-mediated microglial migration,” GLIA, vol. 56, no. 3, pp. 331–341, 2008.
[37]  K. Ohsawa, T. Sanagi, Y. Nakamura, E. Suzuki, K. Inoue, and S. Kohsaka, “Adenosine A3 receptor is involved in ADP-induced microglial process extension and migration,” Journal of Neurochemistry, vol. 121, no. 2, pp. 217–227, 2012.
[38]  A. G. Orr, A. L. Orr, X. Li, R. E. Gross, and S. F. Traynelis, “Adenosine A2A receptor mediates microglial process retraction,” Nature Neuroscience, vol. 12, no. 7, pp. 872–878, 2009.
[39]  W. Penfield, “Microglia and the process of phagocytosis in gliomas,” American Journal of Pathology, vol. 1, no. 1, pp. 77–90, 1925.
[40]  H. Wake, A. J. Moorhouse, and J. Nabekura, “Functions of microglia in the central nervous system—beyond the immune response,” Neuron Glia Biology, vol. 7, no. 1, pp. 47–53, 2011.
[41]  M. Tremblay, M. L. Zettel, J. R. Ison, P. D. Allen, and A. K. Majewska, “Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices,” GLIA, vol. 60, no. 4, pp. 541–558, 2012.
[42]  R. C. Paolicelli, G. Bolasco, F. Pagani et al., “Synaptic pruning by microglia is necessary for normal brain development,” Science, vol. 333, no. 6048, pp. 1456–1458, 2011.
[43]  D. P. Schafer, E. K. Lehrman, A. G. Kautzman, et al., “Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner,” Neuron, vol. 74, no. 4, pp. 691–705, 2012.
[44]  M. Hoshiko, I. Arnoux, E. Avignone, N. Yamamoto, and E. Audinat, “Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex,” Journal of Neuroscience, vol. 32, no. 43, pp. 15106–15111, 2012.
[45]  J. T. Rogers, J. M. Morganti, A. D. Bachstetter et al., “CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity,” Journal of Neuroscience, vol. 31, no. 45, pp. 16241–16250, 2011.
[46]  L. Maggi, M. Scianni, I. Branchi, et al., “CX(3)CR1 deficiency alters hippocampal-dependent plasticity phenomena blunting the effects of enriched environment,” Frontiers in Cellular Neuroscience, vol. 5, p. 22, 2011.
[47]  B. Stevens, N. J. Allen, L. E. Vazquez et al., “The classical complement cascade mediates CNS synapse elimination,” Cell, vol. 131, no. 6, pp. 1164–1178, 2007.
[48]  A. Roumier, C. Béchade, J. Poncer et al., “Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse,” Journal of Neuroscience, vol. 24, no. 50, pp. 11421–11428, 2004.
[49]  S. Wakselman, C. Béchade, A. Roumier, D. Bernard, A. Triller, and A. Bessis, “Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor,” Journal of Neuroscience, vol. 28, no. 32, pp. 8138–8143, 2008.
[50]  C. L. Hsieh, M. Koike, S. C. Spusta et al., “A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia,” Journal of Neurochemistry, vol. 109, no. 4, pp. 1144–1156, 2009.
[51]  A. Kiialainen, K. Hovanes, J. Paloneva, O. Kopra, and L. Peltonen, “Dap12 and Trem2, molecules involved in innate immunity and neurodegeneration, are co-expressed in the CNS,” Neurobiology of Disease, vol. 18, no. 2, pp. 314–322, 2005.
[52]  D. W. McVicar, L. S. Taylor, P. Gosselin et al., “DAP12-mediated signal transduction in natural killer cells: a dominant role for the Syk protein-tyrosine kinase,” Journal of Biological Chemistry, vol. 273, no. 49, pp. 32934–32942, 1998.
[53]  S. K. Chen, P. Tvrdik, E. Peden et al., “Hematopoietic origin of pathological grooming in Hoxb8 mutant mice,” Cell, vol. 141, no. 5, pp. 775–785, 2010.
[54]  N. C. Derecki, J. C. Cronk, Z. Lu et al., “Wild-type microglia arrest pathology in a mouse model of Rett syndrome,” Nature, vol. 484, no. 7392, pp. 105–109, 2012.
[55]  K. M. Lenz, B. M. Nugent, R. Haliyur, and M. M. McCarthy, “Microglia are essential to masculinization of brain and behavior,” Journal of Neuroscience, vol. 33, no. 7, pp. 2761–2772, 2013.
[56]  F. L. Heppner, M. Greter, D. Marino et al., “Experimental autoimmune encephalomyelitis repressed by microglial paralysis,” Nature Medicine, vol. 11, no. 2, pp. 146–152, 2005.
[57]  J. S. Duffield, P. G. Tipping, T. Kipari et al., “Conditional ablation of macrophages halts progression of crescentic glomerulonephritis,” American Journal of Pathology, vol. 167, no. 5, pp. 1207–1219, 2005.
[58]  S. R. McKercher, B. E. Torbett, K. L. Anderson et al., “Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities,” EMBO Journal, vol. 15, no. 20, pp. 5647–5658, 1996.
[59]  E. W. Scott, M. C. Simon, J. Anastasi, and H. Singh, “Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages,” Science, vol. 265, no. 5178, pp. 1573–1577, 1994.
[60]  B. Erblich, L. Zhu, A. M. Etgen, K. Dobrenis, and J. W. Pollard, “Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits,” PLoS ONE, vol. 6, no. 10, Article ID e26317, 2011.
[61]  N. van Rooijen and R. Van Nieuwmegen, “Elimination of phagocytic cells in the spleen after intravenous injection of liposome-encapsulated dichloromethylene diphosphonate. An enzyme-histochemical study,” Cell and Tissue Research, vol. 238, no. 2, pp. 355–358, 1984.
[62]  C. L. Cunningham, V. Martinez-Cerdeno, and S. C. Noctor, “Microglia regulate the number of neural precursor cells in the developing cerebral cortex,” Journal of Neuroscience, vol. 33, no. 10, pp. 4216–4233, 2013.
[63]  J. V. Faustino, X. Wang, C. E. Johnson et al., “Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke,” Journal of Neuroscience, vol. 31, no. 36, pp. 12992–13001, 2011.
[64]  K. Ji, G. Akgul, L. P. Wollmuth, and S. E. Tsirka, “Microglia actively regulate the number of functional synapses,” PLoS One, vol. 8, no. 2, Article ID e56293, 2013.
[65]  M. Lalancette-Hébert, G. Gowing, A. Simard, C. W. Yuan, and J. Kriz, “Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain,” Journal of Neuroscience, vol. 27, no. 10, pp. 2596–2605, 2007.
[66]  S. A. Grathwohl, R. E. K?lin, T. Bolmont et al., “Formation and maintenance of Alzheimer's disease β-amyloid plaques in the absence of microglia,” Nature Neuroscience, vol. 12, no. 11, pp. 1361–1363, 2009.
[67]  A. R. Simard, D. Soulet, G. Gowing, J. Julien, and S. Rivest, “Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease,” Neuron, vol. 49, no. 4, pp. 489–502, 2006.
[68]  G. Gowing, T. Philips, B. Van Wijmeersch et al., “Ablation of proliferating microglia does not affect motor neuron degeneration in amyotrophic lateral sclerosis caused by mutant superoxide dismutase,” Journal of Neuroscience, vol. 28, no. 41, pp. 10234–10244, 2008.
[69]  M. M. Mirrione, D. K. Konomos, I. Gravanis et al., “Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice,” Neurobiology of Disease, vol. 39, no. 1, pp. 85–97, 2010.
[70]  J. Carmen, G. Gowing, J. Julien, and D. Kerr, “Altered immune response to CNS viral infection in mice with a conditional knock-down of macrophage-lineage cells,” GLIA, vol. 54, no. 2, pp. 71–80, 2006.
[71]  H. Galarneau, J. Villeneuve, G. Gowing, J. Julien, and L. Vallières, “Increased glioma growth in mice depleted of macrophages,” Cancer Research, vol. 67, no. 18, pp. 8874–8881, 2007.
[72]  J. L. Marín-Teva, I. Dusart, C. Colin, A. Gervais, N. Van Rooijen, and M. Mallat, “Microglia promote the death of developing purkinje cells,” Neuron, vol. 41, no. 4, pp. 535–547, 2004.
[73]  O. Pascual, S. B. Achour, P. Rostaing, A. Triller, and A. Bessis, “Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 4, pp. E197–E205, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133