全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Functional Topography of Human Corpus Callosum: An fMRI Mapping Study

DOI: 10.1155/2013/251308

Full-Text   Cite this paper   Add to My Lib

Abstract:

The concept of a topographical map of the corpus callosum (CC) has emerged from human lesion studies and from electrophysiological and anatomical tracing investigations in other mammals. Over the last few years a rising number of researchers have been reporting functional magnetic resonance imaging (fMRI) activation in white matter, particularly the CC. In this study the scope for describing CC topography with fMRI was explored by evoking activation through simple sensory stimulation and motor tasks. We reviewed our published and unpublished fMRI and diffusion tensor imaging data on the cortical representation of tactile, gustatory, auditory, and visual sensitivity and of motor activation, obtained in 36 normal volunteers and in 6 patients with partial callosotomy. Activation foci were consistently detected in discrete CC regions: anterior (taste stimuli), central (motor tasks), central and posterior (tactile stimuli), and splenium (auditory and visual stimuli). Reconstruction of callosal fibers connecting activated primary gustatory, motor, somatosensory, auditory, and visual cortices by diffusion tensor tracking showed bundles crossing, respectively, through the genu, anterior and posterior body, and splenium, at sites harboring fMRI foci. These data confirm that the CC commissure has a topographical organization and demonstrate that its functional topography can be explored with fMRI. 1. Introduction The corpus callosum (CC) connects the cerebral hemispheres and provides for interhemispheric integration and transfer of information. Ever since electrophysiological recording from callosal fibers showed somatosensory receptive fields in the anterior portion of the cat commissure [1, 2] and visual inputs to the splenium [3, 4], it was hypothesized that the CC was endowed with a topographical organization. Subsequent electrophysiological [5] and neuroanatomical findings [6, 7] obtained from nonhuman primates after selective cortical ablation or tracing injections, plus a vast body of data ranging from postmortem investigations [8] to studies of patients with CC lesions or callosal resection (split-brain subjects; [9]; see [10–12] for a review), lent further support to the notion. Such organization seems to result in modality-specific regions [13], where the anterior callosal fibers interconnecting the frontal lobes transfer motor information and posterior fibers, which connect the parietal, temporal, and occipital lobes bilaterally, are responsible for the integration of somatosensory (posterior midbody), auditory (isthmus), and visual (splenium)

References

[1]  G. M. Innocenti, T. Manzoni, and G. Spidalieri, “Cutaneous receptive fields of single fibers of the corpus callosum,” Brain Research, vol. 40, no. 2, pp. 507–512, 1972.
[2]  G. M. Innocenti, T. Manzoni, and G. Spidalieri, “Patterns of the somesthetic messages transferred through the corpus callosum,” Experimental Brain Research, vol. 19, no. 5, pp. 447–466, 1974.
[3]  G. Berlucchi, M. S. Gazzaniga, and G. Rizzolatti, “Microelectrode analysis of transfer of visual information by the corpus callosum,” Archives Italiennes de Biologie, vol. 105, no. 4, pp. 583–596, 1967.
[4]  D. H. Hubel and T. N. Wiesel, “Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat,” Journal of Neurophysiology, vol. 30, no. 6, pp. 1561–1573, 1967.
[5]  J. P. Guillemot, L. Richer, L. Prevost, M. Ptito, and F. Lepore, “Receptive field properties of somatosensory callosal fibres in the monkey,” Brain Research, vol. 402, no. 2, pp. 293–302, 1987.
[6]  D. N. Pandya, E. A. Karol, and D. Heilbronn, “The topographical distribution of interhemispheric projections in the corpus callosum of the rhesus monkey,” Brain Research, vol. 32, no. 1, pp. 31–43, 1971.
[7]  D. N. Pandya and B. Seltzer, “The topography of commissural fibers,” in Two Hemispheres-One Brain: Functions of the Corpus Callosum, F. Leporé, M. Ptito, and H. H. Jasper, Eds., pp. 47–73, Alan Liss, New York, NY, USA, 1986.
[8]  M. C. de Lacoste, J. B. Kirkpatrick, and E. D. Ross, “Topography of the human corpus callosum,” Journal of Neuropathology and Experimental Neurology, vol. 44, no. 6, pp. 578–591, 1985.
[9]  S. Caillé, H. C. Sauerwein, A. Schiavetto, J.-G. Villemure, and M. Lassonde, “Sensory and motor interhemispheric integration after section of different portions of the anterior corpus callosum in nonepileptic patients,” Neurosurgery, vol. 57, no. 1, pp. 50–59, 2005.
[10]  G. Berlucchi, “Some effects of cortical and callosal damage on conscious and unconscious processing of visual information and other sensory inputs,” Progress in Brain Research, vol. 144, pp. 79–93, 2004.
[11]  M. S. Gazzaniga, “Forty-five years of split-brain research and still going strong,” Nature Reviews of Neuroscience, vol. 6, no. 8, pp. 653–659, 2005.
[12]  M. Fabri, M. del Pesce, A. Paggi et al., “Contribution of posterior corpus callosum to the interhemispheric transfer of tactile information,” Cognitive Brain Research, vol. 24, no. 1, pp. 73–80, 2005.
[13]  M. G. Funnell, P. M. Corballis, and M. Gazzaniga, “Cortical and subcortical interhemispheric interactions following partial and complete callosotomy,” Archives of Neurology, vol. 57, no. 2, pp. 185–189, 2000.
[14]  M. Fabri, G. Polonara, A. Quattrini, U. Salvolini, M. del Pesce, and T. Manzoni, “Role of the corpus callosum in the somatosensory activation of the ipsilateral cerebral cortex: an fMRI study of callosotomized patients,” European Journal of Neuroscience, vol. 11, no. 11, pp. 3983–3994, 1999.
[15]  M. Fabri, G. Polonara, M. del Pesce, A. Quattrini, U. Salvolini, and T. Manzoni, “Posterior corpus callosum and interhemispheric transfer of somatosensory information: an fMRI and neuropsychological study of a partially callosotomized patient,” Journal of Cognitive Neuroscience, vol. 13, no. 8, pp. 1071–1079, 2001.
[16]  M. S. Gazzaniga and H. Freedman, “Observations on visual processes after posterior callosal section,” Neurology, vol. 23, no. 10, pp. 1126–1130, 1973.
[17]  S. Clarke, P. Maeder, R. Meuli et al., “Interhemispheric transfer of visual motion information after a posterior callosal lesion: a neuropsychological and fMRI study,” Experimental Brain Research, vol. 132, no. 1, pp. 127–133, 2000.
[18]  M. Sugishita, K. Otomo, K. Yamazaki, H. Shimizu, M. Yoshioka, and A. Shinohara, “Dichotic listening in patients with partial section of the corpus callosum,” Brain, vol. 118, no. 2, pp. 417–427, 1995.
[19]  S. Pollmann, M. Maertens, D. Y. von Cramon, J. Lepsien, and K. Hugdahl, “Dichotic listening in patients with splenial and nonsplenial callosal lesions,” Neuropsychology, vol. 16, no. 1, pp. 56–64, 2002.
[20]  M. Tettamanti, E. Paulesu, P. Scifo et al., “Interhemispheric transmission of visuomotor information in humans: fMRI evidence,” Journal of Neurophysiology, vol. 88, no. 2, pp. 1051–1058, 2002.
[21]  K. Omura, T. Tsukamoto, Y. Kotani, Y. Ohgami, M. Minami, and Y. Inoue, “Different mechanisms involved in interhemispheric transfer of visuomotor information,” NeuroReport, vol. 15, no. 18, pp. 2707–2711, 2004.
[22]  B. Weber, V. Treyer, N. Oberholzer et al., “Attention and interhemispheric transfer: a behavioral and fMRI study,” Journal of Cognitive Neuroscience, vol. 17, no. 1, pp. 113–123, 2005.
[23]  E. L. Mazerolle, R. C. N. D’Arcy, X. Song, and S. D. Beyea, “Detecting fMRI activation in white matter: interhemispheric transfer across the corpus callosum,” BioMed Central Neuroscience, vol. 9, pp. 84–94, 2008.
[24]  K. Mosier and I. Bereznaya, “Parallel cortical networks for volitional control of swallowing in humans,” Experimental Brain Research, vol. 140, no. 3, pp. 280–289, 2001.
[25]  M. Zarei, H. Johansen-Berg, S. Smith, O. Ciccarelli, A. J. Thompson, and P. M. Matthews, “Functional anatomy of interhemispheric cortical connections in the human brain,” Journal of Anatomy, vol. 209, no. 3, pp. 311–320, 2006.
[26]  B. U. Meyer, S. Roricht, H. Grafin von Einsiedel, F. Kruggel, and A. Weindl, “Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal human and patients with abonormalities of the corpus callosum,” Brain, vol. 118, no. 2, pp. 429–440, 1995.
[27]  A. Stancak Jr., C. H. Lucking, and R. Kristeva-Feige, “Lateralization of movement related potentials and the size of corpus callosum,” NeuroReport, vol. 11, no. 2, pp. 329–332, 2000.
[28]  L. Bonzano, A. Tacchino, L. Roccatagliata, G. Abbruzzese, G. L. Mancardi, and M. Bove, “Callosal contributions to simultaneous bimanual finger movements,” Journal of Neuroscience, vol. 28, no. 12, pp. 3227–3233, 2008.
[29]  M. Fabri, G. Polonara, G. Mascioli, U. Salvolini, and T. Manzoni, “Topographical organization of human corpus callosum: an fMRI mapping study,” Brain Research, vol. 1370, pp. 99–111, 2011.
[30]  R. C. Oldfield, “The assessment and analysis of handedness: the Edinburgh inventory,” Neuropsychologia, vol. 9, no. 1, pp. 97–113, 1971.
[31]  S.-G. Kim and K. Urgubil, “Functional magnetic resonance imaging of the human brain,” Journal of Neuroscience Methods, vol. 15, pp. 3821–3839, 1997.
[32]  R. Goebel, F. Esposito, and E. Formisano, “Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis,” Human Brain Mapping, vol. 27, no. 5, pp. 392–401, 2006.
[33]  J. Talairach and P. Tournoux, Co-Planar Stereotaxic Atlas of the Human Brain, Georg Thieme, Stuttgart, Germany, 1988.
[34]  M. Fabri, G. Polonara, G. Mascioli et al., “Cortical representation and lateralization of taste in man,” Proceedings of Physiological Societies, vol. 78P, 2005.
[35]  G. Polonara, M. Fabri, T. Manzoni, and U. Salvolini, “Localization of the first (SI) and second (SII) somatic sensory areas in human cerebral cortex with fMRI,” American Journal of Neuroradiology, vol. 20, no. 2, pp. 199–205, 1999.
[36]  M. Fabri, G. Polonara, U. Salvolini, and T. Manzoni, “Bilateral cortical representation of the trunk midline in human first somatic sensory area,” Human Brain Mapping, vol. 25, no. 3, pp. 287–296, 2005.
[37]  M. Fabri, G. Polonara, G. Mascioli, U. Salvolini, and T. Manzoni, “Bilateral representation of peripheral touch receptors in the second somatosensory cortex: a human functional study,” in Proceedings of the 36th International Congress of Physiological Sciences, Kyoto, Japan, August 2009.
[38]  J. S. Shimony, H. Burton, A. A. Epstein, D. G. McLaren, S. W. Sun, and A. Z. Snyder, “Diffusion tensor imaging reveals white matter reorganization in early blind humans,” Cerebral Cortex, vol. 16, no. 11, pp. 1653–1661, 2006.
[39]  G. Polonara, M. Fabri, G. Mascioli, A. Paggi, T. Manzoni, and U. Salvolini, “Interhemispheric connectivity in patients with callosal resection described and quantified using diffusion tensor imaging,” in Proceedings of the 32nd European Society for NeuroRadiology Annual Meeting, Genoa, Italy, September 2007.
[40]  F. B. Pizzini, G. Mascioli, A. Beltramello et al., “Diffusion tensor tracking of callosal fibers several years after callosotomy,” Brain Research, vol. 1312, pp. 10–17, 2010.
[41]  U. Salvolini, G. Polonara, G. Mascioli, M. Fabri, and T. Manzoni, “Organisation topographique du corps calleux chez l'homme. Etude cartographique en imagerie par résonance magnétique fonctionnelle (IRMf),” Bulletin de l’Academie Nationale de Médecine, vol. 194, no. 3, pp. 17–31, 2010.
[42]  B. T. Volpe, J. J. Sidtis, J. D. Holtzman, D. H. Wilson, and M. S. Gazzaniga, “Cortical mechanisms involved in praxis: observations following partial and complete section of the corpus callosum in man,” Neurology, vol. 32, no. 6, pp. 645–650, 1982.
[43]  S. Bentin, A. Sahar, and M. Moscovitch, “Intermanual information transfer in patients with lesions in the trunk of the corpus callosum,” Neuropsychologia, vol. 22, no. 5, pp. 601–611, 1984.
[44]  G. L. Risse, J. Gates, G. Lund, R. C. Maxwell, and A. Rubens, “Interhemispheric transfer in patients with incomplete section of the corpus callosum,” Archives of Neurology, vol. 46, no. 4, pp. 437–443, 1989.
[45]  H. S. Levin, A. J. Mattson, M. Levander et al., “Effects of transcallosal surgery on interhemispheric transfer of information,” Surgical Neurology, vol. 40, no. 1, pp. 65–74, 1993.
[46]  D. H. Geschwind, M. Iacoboni, M. S. Mega, D. W. Zaidel, T. Cloughesy, and E. Zaidel, “Alien hand syndrome: interhemispheric motor disconnection due to a lesion in the midbody of the corpus callosum,” Neurology, vol. 45, no. 4, pp. 802–808, 1995.
[47]  R. C. N. D'Arcy, A. Hamilton, M. Jarmasz, S. Sullivan, and G. Stroink, “Exploratory data analysis reveals visuovisual interhemispheric transfer in functional magnetic resonance imaging,” Magnetic Resonance in Medicine, vol. 55, no. 4, pp. 952–958, 2006.
[48]  I. Kida, F. Hyder, and K. L. Behar, “Inhibition of voltage-dependent sodium channels suppresses the functional magnetic resonance imaging response to forepaw somatosensory activation in the rodent,” Journal of Cerebral Blood Flow and Metabolism, vol. 21, no. 5, pp. 585–591, 2001.
[49]  P. J. Magistretti, “Brain energy metabolism,” in Fundamental Neuroscience, M. J. Zigmond, F. E. Bloom, S. C. Landis, J. L. Roberts, and L. R. Squire, Eds., pp. 339–360, Academic Press, San Diego, Calif, USA, 2003.
[50]  M. Iacoboni, “Visuo-motor integration and control in the human posterior parietal cortex: evidence from TMS and fMRI,” Neuropsychologia, vol. 44, no. 13, pp. 2691–2699, 2006.
[51]  A. J. Smith, H. Blumenfeld, K. L. Behar, D. L. Rothman, R. G. Shulman, and F. Hyder, “Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 16, pp. 10765–10770, 2002.
[52]  Y. Nir, I. Dinstein, R. Malach, and D. J. Heeger, “BOLD and spiking activity,” Nature Neuroscience, vol. 11, no. 5, pp. 523–524, 2008.
[53]  D. J. Rossi, “Another BOLD role for astrocytes: coupling blood flow to neural activity,” Nature Neuroscience, vol. 9, no. 2, pp. 159–161, 2006.
[54]  D. Jakovcevic and D. R. Harder, “Role of astrocytes in matching blood flow to neuronal activity,” Current Topics in Developmental Biology, vol. 79, pp. 75–97, 2007.
[55]  T. Takano, G. F. Tian, W. Peng et al., “Astrocyte-mediated control of cerebral blood flow,” Nature Neuroscience, vol. 9, no. 2, pp. 260–267, 2006.
[56]  S. J. Rabi, C. Madhavi, B. Antonisamy, and R. Koshi, “Quantitative analysis of the human corpus callosum under light microscopy,” European Journal of Anatomy, vol. 11, no. 2, pp. 95–100, 2007.
[57]  S. F. Witelson, “Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study,” Brain, vol. 112, no. 3, pp. 799–835, 1989.
[58]  S. Hofer and J. Frahm, “Topography of the human corpus callosum revisited-comprehensive fiber tractography using diffusion tensor magnetic resonance imaging,” NeuroImage, vol. 32, no. 3, pp. 989–994, 2006.
[59]  Y. P. Chao, K. H. Cho, C. H. Yeh, K. H. Chou, J. H. Chen, and C. P. Lin, “Probabilistic topography of human corpus callosum using cytoarchitectural parcellation and high angular resolution diffusion imaging tractography,” Human Brain Mapping, vol. 30, no. 10, pp. 3172–3187, 2009.
[60]  O. Abe, Y. Masutani, S. Aoki et al., “Topography of the human corpus callosum using diffusion tensor tractography,” Journal of Computer Assisted Tomography, vol. 28, no. 4, pp. 533–539, 2004.
[61]  H. Huang, J. Zhang, H. Jiang et al., “DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum,” NeuroImage, vol. 26, no. 1, pp. 195–205, 2005.
[62]  M. Wahl, B. Lauterbach-Soon, E. Hattingen et al., “Human motor corpus callosum: topography, somatotopy, and link between microstructure and function,” Journal of Neuroscience, vol. 27, no. 45, pp. 12132–12138, 2007.
[63]  R. F. Dougherty, M. Ben-Shachar, R. Bammer, A. A. Brewer, and B. A. Wandell, “Functional organization of human occipital-callosal fiber tracts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 20, pp. 7350–7355, 2005.
[64]  H. W. Gordon, J. E. Bogen, and R. W. Sperry, “Absence of deconnexion syndrome in two patients with partial section of the neocommissures,” Brain, vol. 94, no. 2, pp. 327–336, 1971.
[65]  G. Geffen, J. Nilsson, K. Quinn, and E. L. Teng, “The effect of lesions of the corpus callosum on finger localization,” Neuropsychologia, vol. 23, no. 4, pp. 497–514, 1985.
[66]  S. Aglioti, G. Tassinari, M. C. Corballis, and G. Berlucchi, “Incomplete gustatory lateralization as shown by analysis of taste discrimination after callosotomy,” Journal of Cognitive Neuroscience, vol. 12, no. 2, pp. 238–245, 2000.
[67]  S. M. Aglioti, G. Tassinari, M. Fabri et al., “Taste laterality in the split brain,” European Journal of Neuroscience, vol. 13, no. 1, pp. 195–200, 2001.
[68]  J. R. Gawryluk, K. D. Brewer, S. D. Beyea, and R. C. N. D'Arcy, “Optimizing the detection of white matter fMRI using asymmetric spin echo spiral,” NeuroImage, vol. 45, no. 1, pp. 83–88, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413