全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Maturation of Corpus Callosum Anterior Midbody Is Associated with Neonatal Motor Function in Eight Preterm-Born Infants

DOI: 10.1155/2013/359532

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. The etiology of motor impairments in preterm infants is multifactorial and incompletely understood. Whether corpus callosum development is related to impaired motor function is unclear. Potential associations between motor-related measures and diffusion tensor imaging (DTI) of the corpus callosum in preterm infants were explored. Methods. Eight very preterm infants (gestational age of 28–32 weeks) underwent the Hammersmith neonatal neurological examination and DTI assessments at gestational age of 42 weeks. The total Hammersmith score and a motor-specific score (sum of Hammersmith motor subcategories) were calculated. Six corpus callosum regions of interest were defined on the mid-sagittal DTI slice—genu, rostral body, anterior midbody, posterior midbody, isthmus, and splenium. The fractional anisotropy (FA) and mean diffusivity (MD) of these regions were computed, and correlations between these and Hammersmith measures were sought. Results. Anterior midbody FA measures correlated positively with total Hammersmith (rho , ) and motor-specific scores (rho , ). Total Hammersmith scores also negatively correlated with anterior midbody MD measures (rho , ). Discussion. These results suggest the integrity of corpus callosum axons, particularly anterior midbody axons, is important in mediating neurological functions. Greater callosal maturation was associated with greater motor function. Corpus callosum DTI may prove to be a valuable screening or prognostic marker. 1. Introduction Preterm infants are at a high risk of motor deficits in later life, with approximately fourteen percent of very preterm infants developing cerebral palsy (CP) [1], and up to forty percent of very preterm infants demonstrating mild motor deficits [2]. The mechanisms underlying such motor impairments have not yet been fully elucidated, but have been related to a number of factors, including abnormal cerebral development (particularly in sensorimotor regions) [3], conditions such as periventricular leukomalacia, peri-intraventricular hemorrhage [4], and/or stressors in the neonatal intensive care unit (NICU) environment [5]. New insights into the neural structures and mechanisms, underlying motor function in preterm-born infants, should help in the development of new diagnostic and prognostic tools and provide information on the immediate efficacy of early intervention therapies. The corpus callosum is vital for communicating and integrating motor and somatosensory information between the hemispheres, and for bimanual motor coordination and function [6]. The maturation or

References

[1]  C. M. T. Robertson, M. J. Watt, and Y. Yasui, “Changes in the prevalence of cerebral palsy for children born very prematurely within a population-based program over 30 years,” Journal of the American Medical Association, vol. 297, no. 24, pp. 2733–2740, 2007.
[2]  L. Holsti, R. V. E. Grunau, and M. F. Whitfield, “Developmental coordination disorder in extremely low birth weight children at nine years,” Journal of Developmental and Behavioral Pediatrics, vol. 23, no. 1, pp. 9–15, 2002.
[3]  B. S. Peterson, A. W. Anderson, R. Ehrenkranz et al., “Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants,” Pediatrics, vol. 111, no. 5, pp. 939–948, 2003.
[4]  P. S. Hüppi, “Immature white matter lesions in the premature infant,” Journal of Pediatrics, vol. 145, no. 5, pp. 575–578, 2004.
[5]  G. C. Smith, J. Gutovich, C. Smyser, et al., “Neonatal intensive care unit stress is associated with brain development in preterm infants,” Annals of Neurology, vol. 70, no. 4, pp. 541–549, 2011.
[6]  A. Stan?ák, E. R. Cohen, R. D. Seidler, T. Q. Duong, and S. G. Kim, “The size of corpus callosum correlates with functional activation of medial motor cortical areas in bimanual and unimanual movements,” Cerebral Cortex, vol. 13, no. 5, pp. 475–485, 2003.
[7]  D. Le Bihan, “Looking into the functional architecture of the brain with diffusion MRI,” Nature Reviews Neuroscience, vol. 4, no. 6, pp. 469–480, 2003.
[8]  C. Beaulieu, “The basis of anisotropic water diffusion in the nervous system—a technical review,” NMR in Biomedicine, vol. 15, no. 7-8, pp. 435–455, 2002.
[9]  S. E. Rose, X. Hatzigeorgiou, M. W. Strudwick, G. Durbridge, P. S. W. Davies, and P. B. Colditz, “Altered white matter diffusion anisotropy in normal and preterm infants at term-equivalent age,” Magnetic Resonance in Medicine, vol. 60, no. 4, pp. 761–767, 2008.
[10]  D. K. Thompson, T. E. Inder, N. Faggian et al., “Characterization of the corpus callosum in very preterm and full-term infants utilizing MRI,” NeuroImage, vol. 55, no. 2, pp. 479–490, 2011.
[11]  J. Rose, E. E. Butler, L. E. Lamont, P. D. Barnes, S. W. Atlas, and D. K. Stevenson, “Neonatal brain structure on MRI and diffusion tensor imaging, sex, and neurodevelopment in very-low-birthweight preterm children,” Developmental Medicine and Child Neurology, vol. 51, no. 7, pp. 526–535, 2009.
[12]  J. S. Andrews, M. Ben-Shachar, J. D. Yeatman, L. L. Flom, B. E. A. T. R. I. Z. LUNA, and H. M. Feldman, “Reading performance correlates with white-matter properties in preterm and term children,” Developmental Medicine and Child Neurology, vol. 52, no. 6, pp. e94–e100, 2010.
[13]  K. M. Mullen, B. R. Vohr, K. H. Katz et al., “Preterm birth results in alterations in neural connectivity at age 16 years,” NeuroImage, vol. 54, no. 4, pp. 2563–2570, 2011.
[14]  A. H. Hoon Jr., W. T. Lawrie Jr., E. R. Melhem et al., “Diffusion tensor imaging of periventricular leukomalacia shows affected sensory cortex white matter pathways,” Neurology, vol. 59, no. 5, pp. 752–756, 2002.
[15]  K. J. Rademaker, J. N. G. P. Lam, I. C. Van Haastert et al., “Larger corpus callosum size with better motor performance in prematurely born children,” Seminars in Perinatology, vol. 28, no. 4, pp. 279–287, 2004.
[16]  M. Iai, Y. Tanabe, M. Goto, K. Sugita, and H. Niimi, “A comparative magnetic resonance imaging study of the corpus callosum in neurologically normal children and children with spastic diplegia,” Acta Paediatrica, International Journal of Paediatrics, vol. 83, no. 10, pp. 1086–1090, 1994.
[17]  L. Dubowitz, V. Dubowitz, and E. Mercuri, The Neurological Assessment of the PreTerm & Full-Term Newborn Infant, Cambridge University Press, London, UK, 2nd edition, 1999.
[18]  A. Leemans and D. K. Jones, “The B-matrix must be rotated when correcting for subject motion in DTI data,” Magnetic Resonance in Medicine, vol. 61, no. 6, pp. 1336–1349, 2009.
[19]  S. M. Smith, “Fast robust automated brain extraction,” Human Brain Mapping, vol. 17, no. 3, pp. 143–155, 2002.
[20]  M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, and S. M. Smith, “FSL,” NeuroImage, vol. 62, pp. 782–790, 2012.
[21]  J. G. Sied, A. P. Zijdenbos, and A. C. Evans, “A nonparametric method for automatic correction of intensity nonuniformity in mri data,” IEEE Transactions on Medical Imaging, vol. 17, no. 1, pp. 87–97, 1998.
[22]  D. Morris, R. Nossin-Manor, M. J. Taylor, and J. G. Sled, “Preterm neonatal diffusion processing using detection and replacement of outliers prior to resampling,” Magnetic Resonance in Medicine, vol. 66, no. 1, pp. 92–101, 2011.
[23]  P. J. Basser, J. Mattiello, and D. LeBihan, “MR diffusion tensor spectroscopy and imaging,” Biophysical Journal, vol. 66, no. 1, pp. 259–267, 1994.
[24]  A. H. Hoon Jr., E. E. Stashinko, L. M. Nagae et al., “Sensory and motor deficits in children with cerebral palsy born preterm correlate with diffusion tensor imaging abnormalities in thalamocortical pathways,” Developmental Medicine and Child Neurology, vol. 51, no. 9, pp. 697–704, 2009.
[25]  P. McGraw, L. Liang, and J. M. Provenzale, “Evaluation of normal age-related changes in anisotropy during infancy and childhood as shown by diffusion tensor imaging,” American Journal of Roentgenology, vol. 179, no. 6, pp. 1515–1522, 2002.
[26]  R. Caminiti, H. Ghaziri, R. Galuske, P. R. Hof, and G. M. Innocenti, “Evolution amplified processing with temporally dispersed slow neuronal connectivity in primates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 46, pp. 19551–19556, 2009.
[27]  F. Aboitiz, A. B. Scheibel, R. S. Fisher, and E. Zaidel, “Fiber composition of the human corpus callosum,” Brain Research, vol. 598, no. 1-2, pp. 143–153, 1992.
[28]  W. Hendelman, Atlas of Functional Neuroanatomy, CRC Oress, Ottawa, Canada, 2000.
[29]  M. Wahl, B. Lauterbach-Soon, E. Hattingen et al., “Human motor corpus callosum: topography, somatotopy, and link between microstructure and function,” Journal of Neuroscience, vol. 27, no. 45, pp. 12132–12138, 2007.
[30]  J. H. Gilmore, W. Lin, I. Corouge et al., “Early postnatal development of corpus callosum and corticospinal white matter assessed with quantitative tractography,” American Journal of Neuroradiology, vol. 28, no. 9, pp. 1789–1795, 2007.
[31]  T. B?umer, J. C. Rothwell, and A. Münchau, “Functional connectivity of the human premotor and motor cortex explored with TMS,” in Supplements to Clinical Neurophysiology, W. Paulus and M. Hallett, Eds., chapter 14, pp. 160–169, Elsevier, 2003.
[32]  H. Als, F. H. Duffy, G. B. McAnulty et al., “Early experience alters brain function and structure,” Pediatrics, vol. 113, no. 4 I, pp. 846–857, 2004.
[33]  G. B. McAnulty, S. C. Butler, J. H. Bernstein, H. Als, F. H. Duffy, and D. Zurakowski, “Effects of the newborn individualized developmental care and assessment program (NIDCAP) at age 8 years: preliminary data,” Clinical Pediatrics, vol. 49, no. 3, pp. 258–270, 2010.
[34]  D. C. Howell, Statistical Methods for Psychology, Wadsworth, Philadelphia, Pa, USA, 2009.
[35]  H.-J. Park, J. K. Jae, S.-K. Lee et al., “Corpus callosal connection mapping using cortical gray matter panellation and DT-MRI,” Human Brain Mapping, vol. 29, no. 5, pp. 503–516, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413