全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Variation in Functional Independence among Stroke Survivors Having Fatigue and Depression

DOI: 10.1155/2013/842980

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. This study evaluated variation in functional independence in activities of daily living (ADL) and instrumental activities of daily living (IADL) among individuals with poststroke fatigue (PSF) and poststroke depression (PSD). Methods. A cross-sectional survey involved 65 consenting poststroke survivors who were purposively recruited from physiotherapy clinics of the University College Hospital, Ibadan, Adeoyo Maternity Teaching Hospital, Ibadan, and Federal Medical Center, Gusau. Participants were assessed for symptoms of PSD with short geriatric depression scale-15, PSF with fatigue severity scale, ADL with Barthel Index and IADL with Nottingham extended ADL scale. Data analysis was done using Chi-square and unpaired -test with significance level being 0.05. Results. Participants’ age ranged from 58 to 80 years. PSD alone ( ) and both PSF and PSD ( ) were significantly associated with ADL, while PSF alone was not ( ). PSD alone ( ) and both PSF and PSD ( ) significantly negatively affected IADL, while PSF alone had no significant effect ( ). Conclusions. Participants with PSD alone and those with both PSF and PSD had lower functional independence in ADL and IADL. 1. Introduction In rehabilitation, assessment of functional independence is used to identify disabilities in activities of daily living (ADL). ADL is considered a primary functional status measure in stroke rehabilitation because of their relative objectivity, simplicity, and relevance to patients [1]. ADL include feeding, grooming, dressing, bathing, toileting, and transfers, while instrumental activities of daily living (IADL) comprise mobility, hand function, and social participation [2]. Stroke imposes serious restrictions on the ability to activate, use, and restore physiologic and psychosocial resources, thus promoting imbalance that results in subjective fatigue [3]. Fatigue has a debilitating influence on ADL [4, 5] and is independently associated with health related quality of life. Poststroke fatigue can be defined as a subjective experience and includes such symptoms as rapid inanition, persisting lack of energy, exhaustion, physical and mental tiredness, and apathy [6]. Poststroke fatigue has been attributed to functional impairment after stroke, and its recognition and treatment are important for maximizing recovery [7]. Depression after stroke is common and the effect of poststroke fatigue and depression on functional recovery after stroke has been documented in the literature. Depressed stroke patients have been found to be 30% less likely than nondepressed patients

References

[1]  P. W. Duncan, H. S. Jorgensen, and D. T. Wade, “Outcome measures in acute stroke trials: a systematic review and some recommendations to improve practice,” Stroke, vol. 31, no. 6, pp. 1429–1438, 2000.
[2]  D. L. Roth, W. E. Haley, O. J. Clay et al., “Race and gender differences in 1-year outcomes for community-dwelling stroke survivors with family caregivers,” Stroke, vol. 42, no. 3, pp. 626–631, 2011.
[3]  K. M. Michael, J. K. Allen, and R. F. Macko, “Fatigue after stroke: relationship to mobility, fitness, ambulatory activity, social support, and falls efficacy,” Rehabilitation Nursing, vol. 31, no. 5, pp. 210–217, 2006.
[4]  N. A. Flinn and J. E. Stube, “Post-stroke fatigue: qualitative study of three focus groups,” Occupational Therapy International, vol. 17, no. 2, pp. 81–91, 2010.
[5]  I. G. L. van de Port, G. Kwakkel, V. P. M. Schepers, C. T. I. Heinemans, and E. Lindeman, “Is fatigue an independent factor associated with activities of daily living, instrumental activities of daily living and health-related quality of life in chronic stroke?” Cerebrovascular Diseases, vol. 23, no. 1, pp. 40–45, 2007.
[6]  P. O. Valko, C. L. Bassetti, K. E. Bloch, U. Held, and C. R. Baumann, “Validation of the fatigue severity scale in a Swiss cohort,” Sleep, vol. 31, no. 11, pp. 1601–1607, 2008.
[7]  J. L. Ingles, G. A. Eskes, and S. J. Phillips, “Fatigue after stroke,” Archives of Physical Medicine and Rehabilitation, vol. 80, no. 2, pp. 173–178, 1999.
[8]  S. Lai, P. W. Duncan, J. Keighley, and D. Johnson, “Depressive symptoms and independence in BADL and IADL,” Journal of Rehabilitation Research and Development, vol. 39, no. 5, pp. 589–596, 2002.
[9]  S. K. Ostwald, P. R. Swank, and M. M. Khan, “Predictors of functional independence and stress level of stroke survivors at discharge from inpatient rehabilitation,” Journal of Cardiovascular Nursing, vol. 23, no. 4, pp. 371–377, 2008.
[10]  L. Nannetti, M. Paci, J. Pasquini, B. Lombardi, and P. G. Taiti, “Motor and functional recovery in patients with post-stroke depression,” Disability and Rehabilitation, vol. 27, no. 4, pp. 170–175, 2005.
[11]  J. W. Gargano and M. J. Reeves, “Sex differences in stroke recovery and stroke-specific quality of life: results from a statewide stroke registry,” Stroke, vol. 38, no. 9, pp. 2541–2548, 2007.
[12]  S. M. Lai, P. W. Duncan, P. Dew, and J. Keighley, “Sex differences in stroke recovery,” Preventing Chronic Disease, vol. 2, no. 3, p. A13, 2005.
[13]  M. Piccinelli and G. Wilkinson, “Gender differences in depression. Critical review,” British Journal of Psychiatry, vol. 177, pp. 486–492, 2000.
[14]  A. S. Paradiso and R. G. Robinson, “Gender differences in poststroke depression,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 10, no. 1, pp. 41–47, 1998.
[15]  E. L. Glader, B. Stegmayr, and K. Asplund, “Poststroke fatigue: a 2-year follow-up study of stroke patients in Sweden,” Stroke, vol. 33, no. 5, pp. 1327–1333, 2002.
[16]  R. Glickman-Simon, “Directed Geriatric Assessment-Part II, (Geriatric Depression Scale) Population Medicine, Tufts University School of Medicine,” http://ocw.tufts.edu/data/42/491800.pdf, 2007.
[17]  O. P. Almeida and S. A. Almeida, “Short versions of the geriatric depression scale: a study of theirvalidity for the diagnosis of a major depressive episode according to ICD-10 and DSM-IV,” International Journal of Geriatric Psychiatry, vol. 14, no. 10, pp. 858–865, 1999.
[18]  H. V. Nguyen, C. A. Inderjeeth, E. Tang, L. Barnabas, and M. Merriam, “Screening for depression in hospitalised and community-dwelling elderly: the use of the 4-item, 5-item and 15-item geriatric depression scales,” Australasian Journal on Ageing, vol. 25, no. 4, pp. 204–208, 2006.
[19]  B. Friedman, M. J. Heisel, and R. L. Delavan, “Psychometric properties of the 15-item geriatric depression scale in functionally impaired, cognitively intact, community-dwelling elderly primary care patients,” Journal of the American Geriatrics Society, vol. 53, no. 9, pp. 1570–1576, 2005.
[20]  K. Herlofson and J. P. Larsen, “Measuring fatigue in patients with Parkinson's disease-the Fatigue Severity Scale,” European Journal of Neurology, vol. 9, no. 6, pp. 595–600, 2002.
[21]  V. P. Schepers, A. M. Visser-Meily, M. Ketelaar, and E. Lindeman, “Poststroke fatigue: course and its relation to personal and stroke-related factors,” Archives of Physical Medicine and Rehabilitation, vol. 87, no. 2, pp. 184–188, 2006.
[22]  G. Sinoff and L. Ore, “The Barthel activities of daily living index: self-reporting versus actual performance in the old-old ( years),” Journal of the American Geriatrics Society, vol. 45, no. 7, pp. 832–836, 1997.
[23]  D. Shinar, C. R. Gross, K. S. Bronstein, et al., “Reliability of the activities of daily livingscale and its use in telephone interview,” Archives of Physical Medicine and Rehabilitation, vol. 68, no. 10, pp. 723–728, 1987.
[24]  J. R. F. Gladman, N. B. Lincoln, and S. A. Adams, “Use of the extended ADL scale with stroke patients,” Age and Ageing, vol. 22, no. 6, pp. 419–424, 1993.
[25]  C. Wu, L. Chuang, K. Lin, and Y. Horng, “Responsiveness and validity of two outcome measures of instrumental activities of daily living in stroke survivors receiving rehabilitative therapies,” Clinical Rehabilitation, vol. 25, no. 2, pp. 175–183, 2011.
[26]  F. B. van de Weg, D. J. Kuik, and G. J. Lankhorst, “Post-stroke depression and functional outcome: a cohort study investigating the influence of depression on functional recovery from stroke,” Clinical Rehabilitation, vol. 13, no. 3, pp. 268–272, 1999.
[27]  R. S. Raju, P. S. Sarma, and J. D. Pandian, “Psychosocial problems, quality of life, and functional independence among Indian stroke survivors,” Stroke, vol. 41, no. 12, pp. 2932–2937, 2010.
[28]  C. Brown, H. Hasson, V. Thyselius, and A.-H. Almborg, “Post-stroke depression and functional independence: a conundrum,” Acta Neurologica Scandinavica, vol. 126, no. 1, pp. 45–51, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413