全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Self-Fulfilling Prophecy of Episodic Memory Impairment in Mild Cognitive Impairment: Do Episodic Memory Deficits Identified at Classification Remain Evident When Later Examined with Different Memory Tests?

DOI: 10.1155/2013/437013

Full-Text   Cite this paper   Add to My Lib

Abstract:

Previous studies of mild cognitive impairment (MCI) have been criticised for using the same battery of neuropsychological tests during classification and longitudinal followup. The key concern is that there is a potential circularity when the same tests are used to identify MCI and then subsequently monitor change in function over time. The aim of the present study was to examine the evidence of this potential circularity problem. The present study assessed the memory function of 72 MCI participants and 50 healthy controls using an alternate battery of visual and verbal episodic memory tests 9 months following initial comprehensive screening assessment and MCI classification. Individuals who were classified as multiple-domain amnestic MCI (a-MCI+) at screening show a significantly reduced performance in visual and verbal memory function at followup using a completely different battery of valid and reliable tests. Consistent with their initial classification, those identified as nonamnestic MCI (na-MCI) or control at screening demonstrated the highest performance across the memory tasks. The results of the present study indicate that persistent memory deficits remain evident in amnestic MCI subgroups using alternate memory tests, suggesting that the concerns regarding potential circularity of logic may be overstated in MCI research. 1. Introduction The concept of Mild Cognitive Impairment (MCI) emerged from a series of MAYO clinic epidemiological studies attempting to identify predictive risk factors for Alzheimer’s dementia (AD) [1–3]. The utility of MCI was perceived to be its ability to identify individuals most at risk of future cognitive decline, particularly those likely to transition to AD [2]. Subsequently, the clinical features used to classify MCI have gradually been replaced by MCI diagnostic criteria [4, 5], although a number of researchers question whether these criteria lack appropriate sensitivity and specificity to be considered diagnostic [6–12]. Current MCI classification criteria include concern regarding a change in cognitive functioning; evidence of objective dysfunction (usually from neuropsychological assessment); relatively intact daily functioning; and an absence of dementia [4]. According to the diagnostic criteria outlined by Winblad et al. [5], amnestic subtypes are defined by the presence of an episodic memory deficit, whereas non-amnestic subtypes are defined by the presence of a non-memory deficit (e.g., attention, language, working memory). Both of these broad variants may be further classified as single domain (deficits

References

[1]  R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. Kokmen, and E. G. Tangelos, “Aging, memory, and mild cognitive impairment,” International Psychogeriatrics, vol. 9, supplement 1, pp. 65–69, 1997.
[2]  P. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, “Mild cognitive impairment: clinical characterization and outcome,” Archives of Neurology, vol. 56, no. 3, pp. 303–308, 1999.
[3]  R. C. Petersen, J. C. Stevens, M. Ganguli, E. G. Tangalos, J. L. Cummings, and S. T. DeKosky, “Practice parameter: early detection of dementia: Mild cognitive impairment (an evidence-based review),” Neurology, vol. 56, no. 9, pp. 1133–1142, 2001.
[4]  M. S. Albert, S. T. DeKosky, D. Dickson et al., “The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease,” Alzheimer's & Dementia, vol. 7, no. 3, pp. 270–279, 2011.
[5]  B. Winblad, K. Palmer, M. Kivipelto et al., “Mild cognitive impairment—beyond controversies, towards a consensus: report of the International Working Group on mild cognitive impairment,” Journal of Internal Medicine, vol. 256, no. 3, pp. 240–246, 2004.
[6]  M. J. Summers and N. L. Saunders, “Neuropsychological measures predict decline to Alzheimer's dementia from mild cognitive impairment,” Neuropsychology, vol. 26, no. 4, pp. 498–508, 2012.
[7]  M. Ganguli, H. H. Dodge, C. Shen, and S. T. DeKosky, “Mild cognitive impairment, amnestic type: an epidemiologic study,” Neurology, vol. 63, no. 1, pp. 115–121, 2004.
[8]  S. Gauthier and J. Touchon, “Mild cognitive impairment is not a clinical entity and should not be treated,” Archives of Neurology, vol. 62, no. 7, pp. 1164–1166, 2005.
[9]  S. Larrieu, L. Letenneur, J. M. Orgogozo et al., “Incidence and outcome of mild cognitive impairment in a population-based prospective cohort,” Neurology, vol. 59, no. 10, pp. 1594–1599, 2002.
[10]  K. Palmer, H.-X. Wang, L. B?ckman, B. Winblad, and L. Fratiglioni, “Differential evolution of cognitive impairment in nondemented older persons: results from the Kungsholmen project,” American Journal of Psychiatry, vol. 159, no. 3, pp. 436–442, 2002.
[11]  K. Ritchie, S. Artero, and J. Touchon, “Classification criteria for mild cognitive impairment: a population-based validation study,” Neurology, vol. 56, no. 1, pp. 37–42, 2001.
[12]  M. H. Tabert, J. J. Manly, X. Liu et al., “Neuropsychological prediction of conversion to alzheimer disease in patients with mild cognitive impairment,” Archives of General Psychiatry, vol. 63, no. 8, pp. 916–924, 2006.
[13]  N. L. J. Saunders and M. J. Summers, “Longitudinal deficits to attention, executive, and working memory in subtypes of mild cognitive impairment,” Neuropsychology, vol. 25, no. 2, pp. 237–248, 2011.
[14]  D. A. Loewenstein, A. Acevedo, J. Agron, and R. Duara, “Stability of neurocognitive impairment in different subtypes of mild cognitive impairment,” Dementia and Geriatric Cognitive Disorders, vol. 23, no. 2, pp. 82–86, 2007.
[15]  O. V. Forlenza, B. S. Diniz, P. V. Nunes, C. M. Memória, M. S. Yassuda, and W. F. Gattaz, “Diagnostic transitions in mild cognitive impairment subtypes,” International Psychogeriatrics, vol. 21, no. 6, pp. 1088–1095, 2009.
[16]  A. Burns and M. Zaudig, “Mild cognitive impairment in older people,” The Lancet, vol. 360, no. 9349, pp. 1963–1965, 2002.
[17]  K. Ritchie and J. Touchon, “Mild cognitive impairment: conceptual basis and current nosological status,” The Lancet, vol. 355, no. 9199, pp. 225–228, 2000.
[18]  L. A. Rabin, N. Paré, A. J. Saykin et al., “Differential memory test sensitivity for diagnosing amnestic mild cognitive impairment and predicting conversion to Alzheimer's disease,” Aging, Neuropsychology, and Cognition, vol. 16, no. 3, pp. 357–376, 2009.
[19]  P. Alexopoulos, T. Grimmer, R. Perneczky, G. Domes, and A. Kurz, “Progression to dementia in clinical subtypes of mild cognitive impairment,” Dementia and Geriatric Cognitive Disorders, vol. 22, no. 1, pp. 27–34, 2006.
[20]  S. Belleville, I. Peretz, and D. Malenfant, “Examination of the working memory components in normal aging and in dementia of the Alzheimer type,” Neuropsychologia, vol. 34, no. 3, pp. 195–207, 1996.
[21]  N. L. J. Saunders and M. J. Summers, “Attention and working memory deficits in mild cognitive impairment,” Journal of Clinical and Experimental Neuropsychology, vol. 32, no. 4, pp. 350–357, 2010.
[22]  S. Alladi, R. Arnold, J. Mitchell, P. J. Nestor, and J. R. Hodges, “Mild cognitive impairment: applicability of research criteria in a memory clinic and characterization of cognitive profile,” Psychological Medicine, vol. 36, no. 4, pp. 507–515, 2006.
[23]  S. E. Price, G. J. Kinsella, B. Ong et al., “Learning and memory in amnestic mild cognitive impairment: contribution of working memory,” Journal of the International Neuropsychological Society, vol. 16, no. 2, pp. 342–351, 2010.
[24]  WTAR, Wechsler Test of Adult Reading (WTAR) Test Manual, Harcourt Assessment, 2001.
[25]  R. P. Snaith and A. S. Zigmond, The Hospital Anxiety and Depression Scale (HADS): Manual, GL Assessment, London, UK, 1994.
[26]  P. J. Jurica, C. L. Leitten, and S. Mattis, Dementia Rating Scale-2 (DRS-2), Psychological Assessment Resources, Odessa, Ukraine, 2001.
[27]  M. D. Lezak, D. B. Howieson, and D. W. Loring, Neuropsychological Assessment, Oxford University Press, Oxford, UK, 2nd edition, 2004.
[28]  D. Wechsler, (WMS-III): Administration and Scoring Manual: Wechsler Memory Scale, The Psychological Corporation, San Antonio, Tex, USA, 3rd edition, 1997.
[29]  D. Wechsler, (WAIS-III): Administration and Scoring Manual: Wechsler Adult Intelligence Scale, The Psychological Corporation, San Antonio, Tex, USA, 3rd edition, 1997.
[30]  Cambridge Cognition Ltd, CANTABeclipse Test Administration Guide, Cambridge Cognition, Cambridge, UK, 2011.
[31]  E. Strauss, E. M. S. Sherman, and O. Spreen, A Compendium of Neuropsychological Tests: Administrations, Norms, and Commentary, Oxford University Press, New York, NY, USA, 3rd edition, 2006.
[32]  R. Swainson, J. R. Hodges, C. J. Galton et al., “Early detection and differential diagnosis of Alzheimer's disease and depression with neuropsychological tasks,” Dementia and Geriatric Cognitive Disorders, vol. 12, no. 4, pp. 265–280, 2001.
[33]  M. C. Tierney, A. Nores, W. G. Snow, R. H. Fisher, M. L. Zorzitto, and D. W. Reid, “Use of the Rey Auditory Verbal Learning Test in differentiating normal aging from Alzheimer's and Parkinson's dementia,” Psychological Assessment, vol. 6, no. 2, pp. 129–134, 1994.
[34]  D. C. Howell, Statistical Methods for Psychology, Thomson Learning, Pacific Grove, Calif, USA, 5th edition, 2002.
[35]  J. H. Kramer, A. Nelson, J. K. Johnson et al., “Multiple cognitive deficits in amnestic mild cognitive impairment,” Dementia and Geriatric Cognitive Disorders, vol. 22, no. 4, pp. 306–311, 2006.
[36]  O. L. Lopez, W. J. Jagust, S. T. DeKosky et al., “Prevalence and classification of mild cognitive impairment in the cardiovascular health study cognition study,” Archives of Neurology, vol. 60, no. 10, pp. 1385–1389, 2003.
[37]  H. Tuokko and R. J. Frerichs, “Cognitive impairment with no dementia (CIND): longitudinal studies, the findings, and the issues,” The Clinical Neuropsychologist, vol. 14, no. 4, pp. 504–525, 2000.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413