全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Inflammation, Cerebral Vasospasm, and Evolving Theories of Delayed Cerebral Ischemia

DOI: 10.1155/2013/506584

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cerebral vasospasm (CVS) is a potentially lethal complication of aneurysmal subarachnoid hemorrhage (aSAH). Recently, the symptomatic presentation of CVS has been termed delayed cerebral ischemia (DCI), occurring as early as 3-4 days after the sentinel bleed. For the past 5-6 decades, scientific research has promulgated the theory that cerebral vasospasm plays a primary role in the pathology of DCI and subsequently delayed ischemic neurological decline (DIND). Approximately 70% of patients develop CVS after aSAH with 50% long-term morbidity rates. The exact etiology of CVS is unknown; however, a well-described theory involves an antecedent inflammatory cascade with alterations of intracellular calcium dynamics and nitric oxide fluxes, though the intricacies of this inflammatory theory are currently unknown. Consequently, there have been few advances in the clinical treatment of this patient cohort, and morbidity remains high. Identification of intermediaries in the inflammatory cascade can provide insight into newer clinical interventions in the prevention and management of cerebral vasospasm and will hopefully prevent neurological decline. In this review, we discuss current theories implicating the inflammatory cascade in the development of CVS and potential treatment targets. 1. Introduction Subarachnoid hemorrhage (SAH) is a devastating neurological insult that causes significant morbidity and mortality [1]. One of the greatest sources of this morbidity and mortality is cerebral vasospasm (CVS), leading to delayed cerebral ischemia (DCI) [2]. While angiographic vasospasm is thought to occur in approximately 70% of patients after aSAH, only 25% develop symptomatic CVS [3, 4]. Morbidity remains high despite years of clinical and basic science research done on the topic, with approximately 50% infarction rates in affected patients [5, 6]. An antecedent inflammatory cascade is one of the many etiologies thought to be responsible for the development of CVS. Experimental studies have shown involvement of cytokines, cell adhesion molecules, and leukocytes, and early clinical studies have attempted to inhibit components of the inflammatory cascade to mitigate CVS [7–19]. Additionally, endothelin receptor activation, nitric oxide inhibition, thromboxane receptor modification, and many cell signaling cascades are thought to play an integral role in the development of this pathology [20–27]. Currently, the primary treatment for this patient population involves hemodynamic augmentation and medically or surgically mediated intra-arterial vasodilation. These

References

[1]  G. J. Velat, M. M. Kimball, J Mocco, and B. L. Hoh, “Vasospasm after aneurysmal subarachnoid hemorrhage: review of randomized controlled trials and meta-analyses in the literature,” World Neurosurgery, vol. 76, no. 5, pp. 446–454, 2011.
[2]  M. R. Mayberg, H. H. Batjer, R. Dacey et al., “Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association,” Circulation, vol. 90, no. 5, pp. 2592–2605, 1994.
[3]  N. F. Kassell, T. Sasaki, A. R. T. Colohan, and G. Nazar, “Cerebral vasospasm following aneurysmal subarachnoid hemorrhage,” Stroke, vol. 16, no. 4, pp. 562–572, 1985.
[4]  B. Weir, R. L. Macdonald, and M. Stoodley, “Etiology of cerebral vasospasm,” Acta Neurochirurgica, Supplement, vol. 1999, no. 72, pp. 27–46, 1999.
[5]  E. C. Haley Jr., N. F. Kassell, and J. C. Torner, “The international cooperative study on the timing of aneurysm surgery: the North American experience,” Stroke, vol. 23, no. 2, pp. 205–214, 1992.
[6]  M. R. Mayberg, H. H. Batjer, R. Dacey et al., “Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association,” Stroke, vol. 25, no. 11, pp. 2315–2328, 1994.
[7]  M. Bavbek, R. Polin, A.-L. Kwan, A. S. Arthur, N. F. Kassell, and K. S. Lee, “Monoclonal antibodies against ICAM-1 and CD18 attenuate cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits,” Stroke, vol. 29, no. 9, pp. 1930–1935, 1998.
[8]  Q.-A. Thai, E. M. Oshiro, and R. J. Tamargo, “Inhibition of experimental vasospasm in rats with the periadventitial administration of ibuprofen using controlled-release polymers,” Stroke, vol. 30, no. 1, pp. 140–147, 1999.
[9]  K. Fabender, B. Hodapp, S. Rossol et al., “Endothelin-1 in subarachnoid hemorrhage: an acute-phase reactant produced by cerebrospinal fluid leukocytes,” Stroke, vol. 31, no. 12, pp. 2971–2975, 2000.
[10]  R. E. Clatterbuck, P. Gailloud, L. Ogata et al., “Prevention of cerebral vasospasm by a humanized anti-CD11/CD18 monoclonal antibody administered after experimental subarachnoid hemorrhage in nonhuman primates,” Journal of Neurosurgery, vol. 99, no. 2, pp. 376–382, 2003.
[11]  A. S. Dumont, R. J. Dumont, M. M. Chow et al., “Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation,” Neurosurgery, vol. 53, no. 1, pp. 123–135, 2003.
[12]  M. J. McGirt, J. C. Mavropoulos, L. Y. McGirt et al., “Leukocytosis as an independent risk factor for cerebral vasospasm following aneurysmal subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 98, no. 6, pp. 1222–1226, 2003.
[13]  H. Ulbrich, E. E. Eriksson, and L. Lindbom, “Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease,” Trends in Pharmacological Sciences, vol. 24, no. 12, pp. 640–647, 2003.
[14]  J. L. Frazier, G. Pradilla, P. P. Wang, and R. J. Tamargo, “Inhibition of cerebral vasospasm by intracranial delivery of ibuprofen from a controlled-release polymer in a rabbit model of subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 101, no. 1, pp. 93–98, 2004.
[15]  G. Pradilla, P. P. Wang, F. G. Legnani, L. Ogata, G. N. Dietsch, and R. J. Tamargo, “Prevention of vasospasm by anti-CD11/CD18 monoclonal antibody therapy following subarachnoid hemorrhage in rabbits,” Journal of Neurosurgery, vol. 101, no. 1, pp. 88–92, 2004.
[16]  T. Keiper, S. Santoso, P. P. Nawroth, V. Orlova, and T. Chavakis, “The role of junctional adhesion molecules in cell-cell interactions,” Histology and Histopathology, vol. 20, no. 1, pp. 197–203, 2005.
[17]  G. Pradilla, Q.-A. Thai, F. G. Legnani et al., “Local delivery of ibuprofen via controlled-release polymers prevents angiographic vasospasm in a monkey model of subarachnoid hemorrhage,” Neurosurgery, vol. 57, no. 1, supplement, pp. S-184–S-189, 2005.
[18]  G. L. Gallia and R. J. Tamargo, “Leukocyte-endothelial cell interactions in chronic vasospasm after subarachnoid hemorrhage,” Neurological Research, vol. 28, no. 7, pp. 750–758, 2006.
[19]  P. F. Recinos, G. Pradilla, Q.-A. Thai, M. Perez, A. M. Hdeib, and R. J. Tamargo, “Controlled release of lipopolysaccharide in the subarachnoid space of rabbits induces chronic vasospasm in the absence of blood,” Surgical Neurology, vol. 66, no. 5, pp. 463–469, 2006.
[20]  R. Echigo, N. Shimohata, K. Karatsu, F. Yano, Y. Kayasuga-Kariya, A. Fujisawa, et al., “Trehalose treatment suppresses inflammation, oxidative stress, and vasospasm induced by experimental subarachnoid hemorrhage,” Journal of Translational Medicine, vol. 10, no. 1, p. 80, 2012.
[21]  H. Takeuchi, M. Tanabe, H. Okamoto, and M. Yamazaki, “Effects of thromboxane synthetase inhibitor (RS-5186) on experimentally-induced cerebral vasospasm,” Neurological Research, vol. 21, no. 5, pp. 513–516, 1999.
[22]  V. D. Jadhav, A. Jabre, and T. J.-F. Lee, “Effect of phospholipase C blockade on cerebral vasospasm,” Cerebrovascular Diseases, vol. 25, no. 4, pp. 362–365, 2008.
[23]  G. Pradilla, T. Garzon-Muvdi, J. J. Ruzevick et al., “Systemic L-citrulline prevents cerebral vasospasm in haptoglobin 2-2 transgenic mice after subarachnoid hemorrhage,” Neurosurgery, vol. 70, pp. 747–756, 2012.
[24]  A. K. Vellimana, E. Milner, T. D. Azad et al., “Endothelial nitric oxide synthase mediates endogenous protection against subarachnoid hemorrhage-induced cerebral vasospasm,” Stroke, vol. 42, no. 3, pp. 776–782, 2011.
[25]  R. M. Pluta, “Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment,” Pharmacology and Therapeutics, vol. 105, no. 1, pp. 23–56, 2005.
[26]  A. Suhardja, “Mechanisms of disease: roles of nitric oxide and endothelin-1 in delayed cerebral vasospasm produced by aneurysmal subarachnoid hemorrhage,” Nature Clinical Practice Cardiovascular Medicine, vol. 1, no. 2, pp. 110–116, 2004.
[27]  E. N. Momin, K. E. Schwab, K. L. Chaichana, R. Miller-Lotan, A. P. Levy, and R. J. Tamargo, “Controlled delivery of nitric oxide inhibits leukocyte migration and prevents vasospasm in haptoglobin 2-2 mice after subarachnoid hemorrhage,” Neurosurgery, vol. 65, no. 5, pp. 937–945, 2009.
[28]  D. J. Capampangan, K. E. Wellik, M. I. Aguilar, B. M. Demaerschalk, and D. M. Wingerchuk, “Does prophylactic postoperative hypervolemic therapy prevent cerebral vasospasm and improve clinical outcome after aneurysmal subarachnoid hemorrhage?” Neurologist, vol. 14, no. 6, pp. 395–398, 2008.
[29]  P. Vorkapic, J. A. Bevan, and R. D. Bevan, “Longitudinal in vivo and in vitro time-course study of chronic cerebrovasospasm in the rabbit basilar artery,” Neurosurgical Review, vol. 14, no. 3, pp. 215–219, 1991.
[30]  B. Weir, M. Grace, J. Hansen, and C. Rothberg, “Time course of vasospasm in man,” Journal of Neurosurgery, vol. 48, no. 2, pp. 173–178, 1978.
[31]  J. N. Mills, V. Mehta, J. Russin, A. P. Amar, A. Rajamohan, and W. J. Mack, “Advanced imaging modalities in the detection of cerebral vasospasm,” Neurology Research International, vol. 2013, Article ID 415960, 15 pages, 2013.
[32]  A. Ecker and P. A. Riemenschneider, “Arteriographic demonstration of spasm of the intracranial arteries, with special reference to saccular arterial aneurysms,” Journal of Neurosurgery, vol. 8, no. 6, pp. 660–667, 1951.
[33]  E. A. Perez-Arjona, Z. Delproposto, V. Sehgal, and R. D. Fessler, “New techniques in cerebral imaging,” Neurological Research, vol. 24, supplement 1, pp. S17–S26, 2002.
[34]  N. Janjua and S. A. Mayer, “Cerebral vasospasm after subarachnoid hemorrhage,” Current Opinion in Critical Care, vol. 9, no. 2, pp. 113–119, 2003.
[35]  E. D. Greenberg, R. Gold, M. Reichman et al., “Diagnostic accuracy of CT angiography and CT perfusion for cerebral vasospasm: a meta-analysis,” American Journal of Neuroradiology, vol. 31, no. 10, pp. 1853–1860, 2010.
[36]  A. R. Dehdashti, D. A. Rufenacht, J. Delavelle, A. Reverdin, and N. De Tribolet, “Therapeutic decision and management of aneurysmal subarachnoid haemorrhage based on computed tomographic angiography,” British Journal of Neurosurgery, vol. 17, no. 1, pp. 46–53, 2003.
[37]  G. B. Anderson, J. M. Findlay, D. E. Steinke, and R. Ashforth, “Experience with computed tomographic angiography for the detection of intracranial aneurysms in the setting of acute subarachnoid hemorrhage,” Neurosurgery, vol. 41, no. 3, pp. 522–528, 1997.
[38]  F. Chen, X. Wang, and B. Wu, “Neuroimaging research on cerebrovascular spasm and its current progress,” Acta Neurochirurgica. Supplement, vol. 110, no. 2, pp. 233–237, 2011.
[39]  S. Tamatani, O. Sasaki, S. Takeuchi, Y. Fujii, T. Koike, and R. Tanaka, “Detection of delayed cerebral vasospasm, after rupture of intracranial aneurysms, by magnetic resonance angiography,” Neurosurgery, vol. 40, no. 4, pp. 748–754, 1997.
[40]  C. B. Grandin, G. Cosnard, F. Hammer, T. P. Duprez, G. Stroobandt, and P. Mathurin, “Vasospasm after subarachnoid hemorrhage: diagnosis with MR angiography,” American Journal of Neuroradiology, vol. 21, no. 9, pp. 1611–1617, 2000.
[41]  K. Dalessandri, J. N. St. John, and S. N. Carson, “Correction and monitoring of postoperative cerebral vasospasm,” Angiology, vol. 32, no. 3, pp. 212–216, 1981.
[42]  R. Aaslid, T. M. Markwalder, and H. Nornes, “Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries,” Journal of Neurosurgery, vol. 57, no. 6, pp. 769–774, 1982.
[43]  J. I. Suarez, A. I. Qureshi, A. B. Yahia et al., “Symptomatic vasospasm diagnosis after subarachnoid hemorrhage: evaluation of transcranial Doppler ultrasound and cerebral angiography as related to compromised vascular distribution,” Critical Care Medicine, vol. 30, no. 6, pp. 1348–1355, 2002.
[44]  C. M. Burch, M. A. Wozniak, M. A. Sloan et al., “Detection of intracranial internal carotid artery and middle cerebral artery vasospasm following subarachnoid hemorrhage,” Journal of Neuroimaging, vol. 6, no. 1, pp. 8–15, 1996.
[45]  M. A. Wozniak, M. A. Sloan, M. I. Rothman et al., “Detection of vasospasm by transcranial Doppler sonography: the challenges of the anterior and posterior cerebral arteries,” Journal of Neuroimaging, vol. 6, no. 2, pp. 87–93, 1996.
[46]  K. F. Lindegaard, H. Nornes, S. J. Bakke, W. Sorteberg, and P. Nakstad, “Cerebral vasospasm after subarachnoid haemorrhage investigated by means of transcranial Doppler ultrasound,” Acta Neurochirurgica, Supplement, vol. 42, pp. 81–84, 1988.
[47]  Y. Okada, T. Shima, M. Nishida et al., “Comparison of transcranial doppler investigation of aneurysmal vasospasm with digital subtraction angiographic and clinical findings,” Neurosurgery, vol. 45, no. 3, pp. 443–450, 1999.
[48]  H. White and B. Venkatesh, “Applications of transcranial Doppler in the ICU: a review,” Intensive Care Medicine, vol. 32, no. 7, pp. 981–994, 2006.
[49]  C. Lysakowski, B. Walder, M. C. Costanza, and M. R. Tramèr, “Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: a systematic review,” Stroke, vol. 32, no. 10, pp. 2292–2298, 2001.
[50]  M. A. Sloan, E. C. Haley Jr., N. F. Kassel et al., “Sensitivity and specificity of transcranial Doppler ultrasonography in the diagnosis of vasospasm following subarachnoid hemorrhage,” Neurology, vol. 39, no. 11, pp. 1514–1518, 1989.
[51]  X. Liu-DeRyke and D. H. Rhoney, “Cerebral vasospasm after aneurysmal subarachnoid hemorrhage: an overview of pharmacologic management,” Pharmacotherapy, vol. 26, no. 2, pp. 182–203, 2006.
[52]  J. N. Walton, “The prognosis and management of subarachnoid haemorrhage,” Canadian Medical Association Journal, vol. 72, no. 3, pp. 165–175, 1955.
[53]  P. Rousseaux, B. Scherpereel, M. H. Bernard, J. P. Graftieaux, and J. F. Guyot, “Fever and cerebral vasospasm in ruptured intracranial aneurysms,” Surgical Neurology, vol. 14, no. 6, pp. 459–465, 1980.
[54]  A. Spallone, M. Acqui, F. S. Pastore, and B. Guidetti, “Relationship between leukocytosis and ischemic complications following aneurysmal subarachnoid hemorrhage,” Surgical Neurology, vol. 27, no. 3, pp. 253–258, 1987.
[55]  G. Pradilla, K. L. Chaichana, S. Hoang, J. Huang, and R. J. Tamargo, “Inflammation and cerebral vasospasm after subarachnoid hemorrhage,” Neurosurgery Clinics of North America, vol. 21, no. 2, pp. 365–379, 2010.
[56]  K. L. Chaichana, G. Pradilla, J. Huang, and R. J. Tamargo, “Role of inflammation (leukocyte-endothelial cell interactions) in vasospasm after subarachnoid hemorrhage,” World Neurosurgery, vol. 73, no. 1, pp. 22–41, 2010.
[57]  D. H. Edwards, J. V. Byrne, and T. M. Griffith, “The effect of chronic subarachnoid hemorrhage on basal endothelium-derived relaxing factor activity in intrathecal cerebral arteries,” Journal of Neurosurgery, vol. 76, no. 5, pp. 830–837, 1992.
[58]  A. Agil, C. J. Fuller, and I. Jialal, “Susceptibility of plasma to ferrous iron/hydrogen peroxide-mediated oxidation: demonstration of a possible Fenton reaction,” Clinical Chemistry, vol. 41, no. 2, pp. 220–225, 1995.
[59]  T. M. Griffith, D. H. Edwards, M. J. Lewis, A. C. Newby, and A. H. Henderson, “The nature of endothelium-derived vascular relaxant factor,” Nature, vol. 308, no. 5960, pp. 645–647, 1984.
[60]  J. M. C. Gutteridge, “Lipid peroxidation and antioxidants as biomarkers of tissue damage,” Clinical Chemistry, vol. 41, no. 12, pp. 1819–1828, 1995.
[61]  A. G. Kolias, J. Sen, and A. Belli, “Pathogenesis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage: putative mechanisms and novel approaches,” Journal of Neuroscience Research, vol. 87, no. 1, pp. 1–11, 2009.
[62]  R. E. Ayer and J. H. Zhang, “Oxidative stress in subarachnoid haemorrhage: significance in acute brain injury and vasospasm,” Acta Neurochirurgica, Supplementum, no. 104, pp. 33–41, 2008.
[63]  Y. Maeda, K. Hirano, J. Nishimura, T. Sasaki, and H. Kanaide, “Endothelial dysfunction and altered bradykinin response due to oxidative stress induced by serum deprivation in the bovine cerebral artery,” European Journal of Pharmacology, vol. 491, no. 1, pp. 53–60, 2004.
[64]  J. J. Provencio and N. Vora, “Subarachnoid hemorrhage and inflammation: bench to bedside and back,” Seminars in Neurology, vol. 25, no. 4, pp. 435–444, 2005.
[65]  K. L. Chaichana, A. P. Levy, R. Miller-Lotan, S. Shakur, and R. J. Tamargo, “Haptoglobin 2-2 genotype determines chronic vasospasm after experimental subarachnoid hemorrhage,” Stroke, vol. 38, no. 12, pp. 3266–3271, 2007.
[66]  C.-L. Lin, A.-L. Kwan, A. S. Dumont et al., “Attenuation of experimental subarachnoid hemorrhage-induced increases in circulating intercellular adhesion molecule-1 and cerebral vasospasm by the endothelin-converting enzyme inhibitor CGS 26303,” Journal of Neurosurgery, vol. 106, no. 3, pp. 442–448, 2007.
[67]  C.-L. Lin, A. S. Dumont, T. Calisaneller, A.-L. Kwan, S.-L. Hwong, and K. S. Lee, “Monoclonal antibody against E selectin attenuates subarachnoid hemorrhage-induced cerebral vasospasm,” Surgical Neurology, vol. 64, no. 3, pp. 201–206, 2005.
[68]  H. J?drzejowska-Szypu?ka, M. Larysz-Brysz, M. Kukla, M. ?nietura, and J. Lewin-Kowalik, “Neutralization of interleukin-1β reduces vasospasm and alters cerebral blood vessel density following experimental subarachnoid hemorrhage in rats,” Current Neurovascular Research, vol. 6, no. 2, pp. 95–103, 2009.
[69]  G. Chen, J. Wu, C. Sun et al., “Potential role of JAK2 in cerebral vasospasm after experimental subarachnoid hemorrhage,” Brain Research, vol. 1214, pp. 136–144, 2008.
[70]  G. Bowman, R. H. Bonneau, V. M. Chinchilli, K. J. Tracey, and K. M. Cockroft, “A novel inhibitor of inflammatory cytokine production (CNI-1493) reduces rodent post-hemorrhagic vasospasm,” Neurocritical Care, vol. 5, no. 3, pp. 222–229, 2006.
[71]  H. Yatsushige, M. Yamaguchi, C. Zhou, J. W. Calvert, and J. H. Zhang, “Role of c-Jun N-terminal kinase in cerebral vasospasm after experimental subarachnoid hemorrhage,” Stroke, vol. 36, no. 7, pp. 1538–1543, 2005.
[72]  W. A. Muller, “Mechanisms of leukocyte transendothelial migration,” Annual Review of Pathology, vol. 6, pp. 323–344, 2011.
[73]  Y. Iigo, M. Suematsu, T. Higashida et al., “Constitutive expression of ICAM-1 in rat microvascular systems analyzed by laser confocal microscopy,” American Journal of Physiology, vol. 273, no. 1, part 2, pp. H138–H147, 1997.
[74]  C. L. Klein, F. Bittinger, H. Kohler et al., “Comparative studies on vascular endothelium in vitro: 3. Effects of cytokines on the expression of E-Selectin, ICAM-1 and VCAM-1 by cultured human endothelial cells obtained from different passages,” Pathobiology, vol. 63, no. 2, pp. 83–92, 1995.
[75]  D. Scholz, B. Devaux, A. Hirche et al., “Expression of adhesion molecules is specific and time-dependent in cytokine-stimulated endothelial cells in culture,” Cell and Tissue Research, vol. 284, no. 3, pp. 415–423, 1996.
[76]  Y. Hirashima, S. Nakamura, S. Endo, N. Kuwayama, Y. Naruse, and A. Takaku, “Elevation of platelet activating factor, inflammatory cytokines, and coagulation factors in the internal jugular vein of patients with subarachnoid hemorrhage,” Neurochemical Research, vol. 22, no. 10, pp. 1249–1255, 1997.
[77]  K. Fassbender, B. Hodapp, S. Rossol et al., “Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries,” Journal of Neurology Neurosurgery and Psychiatry, vol. 70, no. 4, pp. 534–537, 2001.
[78]  C. Muroi, J. K. Burkhardt, M. Hugelshofer, M. Seule, K. Mishima, and E. Keller, “Magnesium and the inflammatory response: potential pathophysiological implications in the management of patients with aneurysmal subarachnoid hemorrhage?” Magnesium Research, vol. 25, no. 2, pp. 64–71, 2012.
[79]  W. Ni, Y. X. Gu, D. L. Song, B. Leng, P. L. Li, and Y. Mao, “The relationship between IL-6 in CSF and occurrence of vasospasm after subarachnoid hemorrhage,” Acta Neurochirurgica. Supplement, vol. 110, no. 1, pp. 203–208, 2011.
[80]  S. Hendryk, B. Jarzab, and J. Josko, “Increase of the IL-1β and IL-6 levels in CSF in patients with vasospasm following aneurysmal SAH,” Neuroendocrinology Letters, vol. 25, no. 1-2, pp. 141–147, 2004.
[81]  T. Mathieson, G. Edner, E. Ulfarsson, and B. Andersson, “Cerebrospinal fluid interleukin-1 receptor antagonist and tumor necrosis factor-α following subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 87, no. 2, pp. 215–220, 1997.
[82]  A. Sarrafzadeh, F. Schlenk, C. Gericke, and P. Vajkoczy, “Relevance of cerebral interleukin-6 after aneurysmal subarachnoid hemorrhage,” Neurocritical Care, vol. 13, no. 3, pp. 339–346, 2010.
[83]  R. D. Rothoerl, C. Axmann, A.-L. Pina, C. Woertgen, and A. Brawanski, “Possible role of the C-reactive protein and white blood cell count in the pathogenesis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage,” Journal of Neurosurgical Anesthesiology, vol. 18, no. 1, pp. 68–72, 2006.
[84]  D. Parkinson and S. Stephensen, “Leukocytosis and subarachnoid hemorrhage,” Surgical Neurology, vol. 21, no. 2, pp. 132–134, 1984.
[85]  M. R. Crompton, “The pathogenesis of cerebral infarction following the rupture of cerebral berry aneurysms,” Brain, vol. 87, no. 3, pp. 491–510, 1964.
[86]  J. T. Hughes and P. M. Schianchi, “Cerebral artery spasm. A histological study at necropsy of the blood vessels in cases of subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 48, no. 4, pp. 515–525, 1978.
[87]  A. T. Fraticelli, B. P. Cholley, M.-R. Losser, J.-P. S. Maurice, and D. Payen, “Milrinone for the treatment of cerebral vasospasm after aneurysmal subarachnoid hemorrhage,” Stroke, vol. 39, no. 3, pp. 893–898, 2008.
[88]  A. Biondi, G. K. Ricciardi, L. Puybasset et al., “Intra-arterial nimodipine for the treatment of symptomatic cerebral vasospasm after aneurysmal subarachnoid hemorrhage: preliminary results,” American Journal of Neuroradiology, vol. 25, no. 6, pp. 1067–1076, 2004.
[89]  A. R. Fathi, R. M. Pluta, K. D. Bakhtian, M. Qi, and R. R. Lonser, “Reversal of cerebral vasospasm via intravenous sodium nitrite after subarachnoid hemorrhage in primates: laboratory investigation,” Journal of Neurosurgery, vol. 115, no. 6, pp. 1213–1220, 2011.
[90]  B. P. Thampatty, P. R. Sherwood, M. J. Gallek et al., “Role of Endothelin-1 in human aneurysmal subarachnoid hemorrhage: associations with vasospasm and delayed cerebral ischemia,” Neurocritical Care, vol. 15, no. 1, pp. 19–27, 2011.
[91]  T. Asano, I. Ikegaki, Y. Suzuki, S. Satoh, and M. Shibuya, “Endothelin and the production of cerebral vasospasm in dogs,” Biochemical and Biophysical Research Communications, vol. 159, no. 3, pp. 1345–1351, 1989.
[92]  M. Zimmermann and V. Seifert, “Endothelin receptor antagonists and cerebral vasospasm,” Clinical Autonomic Research, vol. 14, no. 3, pp. 143–145, 2004.
[93]  E. Thorin, T.-D. Nguyen, and A. Bouthillier, “Control of vascular tone by endogenous endothelin-1 in human pial arteries,” Stroke, vol. 29, no. 1, pp. 175–180, 1998.
[94]  K. Bian and F. Murad, “Nitric oxide (NO)—biogeneration, regulation, and relevence to human diseases,” Frontiers in Bioscience, vol. 8, pp. d264–d278, 2003.
[95]  L. Mascia, L. Fedorko, D. J. Stewart et al., “Temporal relationship between endothelin-1 concentrations and cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage,” Stroke, vol. 32, no. 5, pp. 1185–1189, 2001.
[96]  A.-L. Kwan, N. J. Solenski, N. F. Kassell, and K. S. Lee, “Inhibition of nitric oxide generation and lipid peroxidation attenuates hemolysate-induced injury to cerebrovascular endothelium,” Acta Neurochirurgica, vol. 139, no. 3, pp. 240–248, 1997.
[97]  R. M. Pluta, B. G. Thompson, T. M. Dawson, S. H. Snyder, R. J. Boock, and E. H. Oldfield, “Loss of nitric oxide synthase immunoreactivity in cerebral vasospasm,” Journal of Neurosurgery, vol. 84, no. 4, pp. 648–654, 1996.
[98]  B. A. Iuliano, R. M. Pluta, C. Jung, and E. H. Oldfield, “Endothelial dysfunction in a primate model of cerebral vasospasm,” Journal of Neurosurgery, vol. 100, no. 2, pp. 287–294, 2004.
[99]  R. M. Pluta, J. K. B. Afshar, R. J. Boock, and E. H. Oldfield, “Temporal changes in perivascular concentrations of oxyhemoglobin, deoxyhemoglobin, and methemoglobin after subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 88, no. 3, pp. 557–561, 1998.
[100]  J. W. Peterson, S. Nishizawa, J. D. Hackett, T. Bun, A. Teramura, and N. T. Zervas, “Cyclosporine A reduces cerebral vasospasm after subarachnoid hemorrhage in dogs,” Stroke, vol. 21, no. 1, pp. 133–137, 1990.
[101]  L. Fei and F. Golwa, “Topical application of dexamethasone to prevent cerebral vasospasm after aneurysmal subarachnoid haemorrhage: a pilot study,” Clinical Drug Investigation, vol. 27, no. 12, pp. 827–832, 2007.
[102]  K. Nagata, T. Sasaki, J. Iwama et al., “Failure of FK-506, a new immunosuppressant, to prevent cerebral vasospasm in a canine two-hemorrhage model,” Journal of Neurosurgery, vol. 79, no. 5, pp. 710–715, 1993.
[103]  N. Minami, E. Tani, M. Yokota, Y. Maeda, and I. Yamaura, “Immunohistochemistry of leukotriene C4 in experimental cerebral vasospasm,” Acta Neuropathologica, vol. 81, no. 4, pp. 401–407, 1991.
[104]  T. Sugawara, R. Ayer, V. Jadhav, W. Chen, T. Tsubokawa, and J. H. Zhang, “Mechanisms of statin treatment in cerebral vasospasm,” Acta neurochirurgica. Supplement, vol. 110, no. 2, part 2, pp. 9–11, 2011.
[105]  J. R. Lynch, H. Wang, M. J. McGirt et al., “Simvastatin reduces vasospasm after aneurysmal subarachnoid hemorrhage: results of a pilot randomized clinical trial,” Stroke, vol. 36, no. 9, pp. 2024–2026, 2005.
[106]  J. L. Trimble and D. R. Kockler, “Statin treatment of cerebral vasospasm after aneurysmal subarachnoid hemorrhage,” Annals of Pharmacotherapy, vol. 41, no. 12, pp. 2019–2023, 2007.
[107]  G. Bowman, S. Dixit, R. H. Bonneau et al., “Neutralizing antibody against interleukin-6 attenuates posthemorrhagic vasospasm in the rat femoral artery model,” Neurosurgery, vol. 54, no. 3, pp. 719–726, 2004.
[108]  A. M. Yahia, J. F. Kirmani, A. I. Qureshi, L. R. Guterman, and L. N. Hopkins, “The safety and feasibility of continuous intravenous magnesium sulfate for prevention of cerebral vasospasm in aneurysmal subarachnoid hemorrhage,” Neurocritical Care, vol. 3, no. 1, pp. 16–23, 2005.
[109]  Q. A. Shah, M. Z. Memon, M. F. K. Suri et al., “Super-selective intra-arterial magnesium sulfate in combination with nicardipine for the treatment of cerebral vasospasm in patients with subarachnoid hemorrhage,” Neurocritical Care, vol. 11, no. 2, pp. 190–198, 2009.
[110]  G. J. Pyne, T. A. D. Cadoux-Hudson, and J. F. Clark, “Magnesium protection against in vitro cerebral vasospasm after subarachnoid haemorrhage,” British Journal of Neurosurgery, vol. 15, no. 5, pp. 409–415, 2001.
[111]  K. Mori, T. Yamamoto, M. Miyazaki et al., “Effect of intrathecal magnesium sulfate solution injection via a microcatheter in the cisterna magna on cerebral vasospasm in the canine subarachnoid haemorrhage model,” British Journal of Neurosurgery, vol. 26, no. 1, pp. 64–68, 2012.
[112]  J. S. Jeon, S. H. Sheen, G. Hwang, S. H. Kang, D. H. Heo, and Y. J. Cho, “Intravenous magnesium infusion for the prevention of symptomatic cerebral vasospasm after aneurysmal subarachnoid hemorrhage,” Journal of Korean Neurosurgical Society, vol. 52, no. 2, pp. 75–79, 2012.
[113]  B. T. Altura and B. M. Altura, “Withdrawal of magnesium causes vasospasm while elevated magnesium produces relaxation of tone in cerebral arteries,” Neuroscience Letters, vol. 20, no. 3, pp. 323–327, 1980.
[114]  R. L. Macdonald, R. T. Higashida, E. Keller et al., “Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2),” The Lancet Neurology, vol. 10, no. 7, pp. 618–625, 2011.
[115]  Y. Hong, S. Guo, S. Chen, C. Sun, J. Zhang, and X. Sun, “Beneficial effect of hydrogen-rich saline on cerebral vasospasm after experimental subarachnoid hemorrhage in rats,” Journal of Neuroscience Research, vol. 90, no. 8, pp. 1670–1680, 2012.
[116]  M. Lim, R. S. Bower, Y. Wang et al., “The predictive value of serum myeloperoxidase for vasospasm in patients with aneurysmal subarachnoid hemorrhage,” Neurosurgical Review, vol. 35, no. 3, pp. 413–419, 2012.
[117]  Z. Prokopowicz, J. Marcinkiewicz, D. R. Katz, and B. M. Chain, “Neutrophil myeloperoxidase: soldier and statesman,” Archivum Immunologiae et Therapiae Experimentalis, vol. 60, no. 1, pp. 43–54, 2012.
[118]  J. A. Frontera, A. Fernandez, J. M. Schmidt et al., “Defining vasospasm after subarachnoid hemorrhage: what is the most clinically relevant definition?” Stroke, vol. 40, no. 6, pp. 1963–1968, 2009.
[119]  P. M. Meyers and E. S. Connolly Jr., “Stroke: disappointing results for clazosentan in CONSCIOUS-2,” Nature Reviews Neurology, vol. 7, no. 12, pp. 660–661, 2011.
[120]  J. Hansen-Schwartz, P. Vajkoczy, R. L. Macdonald, R. M. Pluta, and J. H. Zhang, “Cerebral vasospasm: looking beyond vasoconstriction,” Trends in Pharmacological Sciences, vol. 28, no. 6, pp. 252–256, 2007.
[121]  L. Z. Leng, M. E. Fink, and C. Iadecola, “Spreading depolarization: a possible new culprit in the delayed cerebral ischemia of subarachnoid hemorrhage,” Archives of Neurology, vol. 68, no. 1, pp. 31–36, 2011.
[122]  C. Muroi, M. Seule, K. Mishima, and E. Keller, “Novel treatments for vasospasm after subarachnoid hemorrhage,” Current Opinion in Critical Care, vol. 18, no. 2, pp. 119–126, 2012.
[123]  M. D. I. Vergouwen, M. Vermeulen, B. A. Coert, E. S. G. Stroes, and Y. B. W. E. M. Roos, “Microthrombosis after aneurysmal subarachnoid hemorrhage: an additional explanation for delayed cerebral ischemia,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 11, pp. 1761–1770, 2008.
[124]  M. J. Rowland, G. Hadjipavlou, M. Kelly, J. Westbrook, and K. T. Pattinson, “Delayed cerebral ischaemia after subarachnoid haemorrhage: looking beyond vasospasm,” British Journal of Anaesthesia, vol. 109, no. 3, pp. 315–329, 2012.
[125]  J. Claassen, J. R. Carhuapoma, K. T. Kreiter, E. Y. Du, E. S. Connolly, and S. A. Mayer, “Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome,” Stroke, vol. 33, no. 5, pp. 1225–1232, 2002.
[126]  H. Nornes, “The role of intracranial pressure in the arrest of hemorrhage in patients with ruptured intracranial aneurysm,” Journal of Neurosurgery, vol. 39, no. 2, pp. 226–234, 1973.
[127]  E. Grote and W. Hassler, “The critical first minutes after subarachnoid hemorrhage,” Neurosurgery, vol. 22, no. 4, pp. 654–661, 1988.
[128]  T. R?tsep and T. Asser, “Cerebral hemodynamic impairment after aneurysmal subarachnoid hemorrhage as evaluated using transcranial Doppler ultrasonography: relationship to delayed cerebral ischemia and clinical outcome,” Journal of Neurosurgery, vol. 95, no. 3, pp. 393–401, 2001.
[129]  J. P. Dreier, J. Woitzik, M. Fabricius et al., “Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations,” Brain, vol. 129, no. 12, pp. 3224–3237, 2006.
[130]  J. P. Dreier, S. Major, A. Manning et al., “Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage,” Brain, vol. 132, no. 7, pp. 1866–1881, 2009.
[131]  C. J. M. Frijns, R. Fijnheer, A. Algra, J. A. Van Mourik, J. Van Gijn, and G. J. E. Rinkel, “Early circulating levels of endothelial cell activation markers in aneurysmal subarachnoid haemorrhage: associations with cerebral ischaemic events and outcome,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 77, no. 1, pp. 77–83, 2006.
[132]  S. Suzuki, M. Kimura, M. Souma, H. Ohkima, T. Iwabuchi, and T. Shimiz u, “Cerebral microthrombosis in symptomatic cerebral vasospasm—a quantitative histological study in autopsy cases,” Neurologia Medico-Chirurgica, vol. 30, no. 5, pp. 309–316, 1990.
[133]  J. G. Romano, A. M. Forteza, M. Concha et al., “Detection of microemboli by transcranial Doppler ultrasonography in aneurysmal subarachnoid hemorrhage,” Neurosurgery, vol. 50, no. 5, pp. 1026–1031, 2002.
[134]  Y. Z. Al-Tamimi, D. Bhargava, R. G. Feltbower et al., “Lumbar drainage of cerebrospinal fluid after aneurysmal subarachnoid hemorrhage: a prospective, randomized, controlled trial (LUMAS),” Stroke, vol. 43, no. 3, pp. 677–682, 2012.
[135]  J. Bardutzky, J. Witsch, E. Jüttler, S. Schwab, P. Vajkoczy, and S. Wolf, “EARLYDRAIN-outcome after early lumbar CSF-drainage in aneurysmal subarachnoid hemorrhage: study protocol for a randomized controlled trial,” Trials, vol. 12, article 203, 2011.
[136]  D. H?nggi, S. Eicker, K. Beseoglu, J. Behr, B. Turowski, and H.-J. Steiger, “A multimodal concept in patients after severe aneurysmal subarachnoid hemorrhage: results of a controlled single centre prospective randomized multimodal phase I/II trial on cerebral vasospasm,” Zentralblatt fur Neurochirurgie, vol. 70, no. 2, pp. 61–67, 2009.
[137]  T. Mathiesen, D. Fuchs, H. Wachter, and H. von Holst, “Increased CSF neopterin levels in subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 73, no. 1, pp. 69–71, 1990.
[138]  J. W. Peterson, B.-D. Kwun, J. D. Hackett, and N. T. Zervas, “The role of inflammation in experimental cerebral vasospasm,” Journal of Neurosurgery, vol. 72, no. 5, pp. 767–774, 1990.
[139]  H. Onda, H. Kasuya, K. Takakura et al., “Identification of genes differentially expressed in canine vasospastic cerebral arteries after subarachnoid hemorrhage,” Journal of Cerebral Blood Flow and Metabolism, vol. 19, no. 11, pp. 1279–1288, 1999.
[140]  Y. Aihara, H. Kasuya, H. Onda, T. Hori, and J. Takeda, “Quantitative analysis of gene expressions related to inflammation in canine spastic artery after subarachnoid hemorrhage,” Stroke, vol. 32, no. 1, pp. 212–217, 2001.
[141]  M. J. McGirt, J. R. Lynch, R. Blessing et al., “Serum von Willebrand factor, matrix metalloproteinase-9, and vascular endothelial growth factor levels predict the onset of cerebral vasospasm after aneurysmal subarachnoid hemorrhage,” Neurosurgery, vol. 51, no. 5, pp. 1128–1135, 2002.
[142]  T. Sasaki, H. Kasuya, H. Onda et al., “Role of p38 mitogen-activated protein kinase on cerebral vasospasm after subarachnoid hemorrhage,” Stroke, vol. 35, no. 6, pp. 1466–1470, 2004.
[143]  M.-L. Zhou, J.-X. Shi, C.-H. Hang et al., “Potential contribution of nuclear factor-κB to cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 9, pp. 1583–1592, 2007.
[144]  Z. Wang, K.-Y. Wang, Y. Wu, P. Zhou, X.-O. Sun, and G. Chen, “Potential role of CD34 in cerebral vasospasm after experimental subarachnoid hemorrhage in rats,” Cytokine, vol. 52, no. 3, pp. 245–251, 2010.
[145]  C. Wirrig, I. Hunter, F. A. Mathieson, and G. F. Nixon, “Sphingosylphosphorylcholine is a proinflammatory mediator in cerebral arteries,” Journal of Cerebral Blood Flow & Metabolism, vol. 31, no. 1, pp. 212–221, 2011.
[146]  K. Tokiyoshi, T. Ohnishi, and Y. Nii, “Efficacy and toxicity of thromboxane synthetase inhibitor for cerebral vasospasm after subarachnoid hemorrhage,” Surgical Neurology, vol. 36, no. 2, pp. 112–118, 1991.
[147]  K. Iseda, S. Ono, K. Onoda et al., “Antivasospastic and antiinflammatory effects of caspase inhibitor in experimental subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 107, no. 1, pp. 128–135, 2007.
[148]  T. Yoshimoto, T. Shirasaka, S. Fujimoto et al., “Cilostazol may prevent cerebral vasospasm following subarachnoid hemorrhage,” Neurologia Medico-Chirurgica, vol. 49, no. 6, pp. 235–240, 2009.
[149]  Y. Wu, X.-D. Zhao, Z. Zhuang et al., “Peroxisome proliferator-activated receptor gamma agonist rosiglitazone attenuates oxyhemoglobin-induced Toll-like receptor 4 expression in vascular smooth muscle cells,” Brain Research, vol. 1322, pp. 102–108, 2010.
[150]  C.-Z. Chang, C.-L. Lin, N. F. Kassel, A.-L. Kwan, and S.-L. Howng, “6-mercaptopurine attenuates adhesive molecules in experimental vasospasm,” Acta Neurochirurgica, vol. 152, no. 5, pp. 861–867, 2010.
[151]  S. Muehlschlegel, G. Rordorf, and J. Sims, “Effects of a single dose of dantrolene in patients with cerebral vasospasm after subarachnoid hemorrhage: a prospective pilot study,” Stroke, vol. 42, no. 5, pp. 1301–1306, 2011.
[152]  W. Zhang, N. H. Khatibi, M. Yamaguchi-Okada et al., “Mammalian target of rapamycin (mTOR) inhibition reduces cerebral vasospasm following a subarachnoid hemorrhage injury in canines,” Experimental Neurology, vol. 233, no. 2, pp. 799–806, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413