全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Invasive and Noninvasive Multimodal Bedside Monitoring in Subarachnoid Hemorrhage: A Review of Techniques and Available Data

DOI: 10.1155/2013/987934

Full-Text   Cite this paper   Add to My Lib

Abstract:

Delayed-cerebral ischemia is a major cause of morbidity and mortality in the setting of aneurysmal subarachnoid hemorrhage. Despite extensive research efforts and a breadth of collective clinical experience, accurate diagnosis of vasospasm remains difficult, and effective treatment options are limited. Classically, diagnosis has focused on imaging assessment of the cerebral vasculature. Recently, invasive and noninvasive bedside techniques designed to characterize relevant hemodynamic and metabolic alterations have gained substantial attention. Such modalities include microdialysis, brain tissue oxygenation, jugular bulb oximetry, thermal diffusion cerebral blood flow, and near-infrared spectroscopy. This paper reviews these modalities and examines data pertinent to the diagnosis and management of cerebral vasospasm. 1. Introduction Delayed-cerebral ischemia (DCI) is a major cause of morbidity and mortality in the setting of aneurysmal subarachnoid hemorrhage (aSAH) [1]. Early diagnosis and effective treatment of cerebral vasospasm remain considerable challenges. Neurologists, neurosurgeons, and intensivists utilize multiple advanced diagnostic imaging techniques and examine a broad spectrum of physiologic parameters in attempts to identify reversible cerebral ischemia following aSAH. These modalities provide important data that guide treatment decisions and influence management protocols. Nonetheless, vasospasm related morbidity and mortality remain exceedingly high. Over the past twenty years, efforts have centered on identifying metabolic substrates relevant to the pathogenesis of cerebral vasospasm. As a result, intracerebral monitoring has given rise to a new, multimodal discipline providing specialists, a wide a variety of novel biomarkers potentially relevant to the diagnosis and management of delayed cerebral ischemia. This paper reviews both invasive and noninvasive multimodal bedside monitoring strategies and examines data pertinent to the diagnosis and management of cerebral vasospasm. 2. Methods An extensive literature search through PubMed medical database through July 2012 was conducted using combinations of the keywords “aneurysmal subarachnoid hemorrhage,” “vasospasm,” “microdialysis,” “brain tissue oxygenation (Licox, Integra Neurosciences),” “jugular bulb oximetry,” “thermal diffusion cerebral blood flow (Hemedex, Hemedex Inc.),” and “near-infrared spectroscopy.” All titles and abstracts identified were reviewed. Additional articles were identified from the reference lists of the selected manuscripts. Articles in all languages were

References

[1]  M. R. Mayberg, H. H. Batjer, R. Dacey et al., “Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association,” Stroke, vol. 25, no. 11, pp. 2315–2328, 1994.
[2]  P. J. Hutchinson, M. T. O'Connell, P. G. Al-Rawi et al., “Clinical cerebral microdialysis: a methodological study,” Journal of Neurosurgery, vol. 93, no. 1, pp. 37–43, 2000.
[3]  P. Reinstrup, N. St?hl, P. Mellerg?rd, T. Uski, U. Ungerstedt, and C. H. Nordstr?m, “Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery,” Neurosurgery, vol. 47, no. 3, pp. 701–710, 2000.
[4]  O. G. Nilsson, L. Brandt, U. Ungerstedt, and H. S?veland, “Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration,” Neurosurgery, vol. 45, no. 5, pp. 1176–1185, 1999.
[5]  A. Sarrafzadeh, D. Huax, O. Sakowtz et al., “Acute focal neurological deficits in aneurysmal subarachnoid hemorrhage: relation of clinical course, CT findings, and metabolite abnormalities monitored with bedside microdialysis,” Stroke, vol. 34, no. 6, pp. 1382–1388, 2003.
[6]  A. S. Sarrafzadeh, D. Haux, L. Lüdemann et al., “Cerebral ischemia in aneurysmal subarachnoid hemorrhage: a correlative microdialysis-PET study,” Stroke, vol. 35, no. 3, pp. 638–643, 2004.
[7]  A. S. Sarrafzadeh, A. Nagel, M. Czabanka, T. Denecke, P. Vajkoczy, and M. Plotkin, “Imaging of hypoxic-ischemic penumbra with 18F-fluoromisonidazole PET/CT and measurement of related cerebral metabolism in aneurysmal subarachnoid hemorrhage,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 1, pp. 36–45, 2010.
[8]  A. W. Unterberg, O. W. Sakowitz, A. S. Sarrafzadeh, G. Benndorf, and W. R. Lanksch, “Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 94, no. 5, pp. 740–749, 2001.
[9]  R. Kett-White, P. J. Hutchinson, P. G. Al-Rawi et al., “Adverse cerebral events detected after subarachnoid hemorrhage using brain oxygen and microdialysis probes,” Neurosurgery, vol. 50, no. 6, pp. 1213–1222, 2002.
[10]  K. D. Yundt, R. L. Grubb Jr., M. N. Diringer, and W. J. Powers, “Autoregulatory vasodilation of parenchymal vessels is impaired during cerebral vasospasm,” Journal of Cerebral Blood Flow and Metabolism, vol. 18, pp. 419–424, 1998.
[11]  E. Maloney-Wilensky and P. Le Roux, “The physiology behind direct brain oxygen monitors and practical aspects of their use,” Child's Nervous System, vol. 26, no. 4, pp. 419–430, 2010.
[12]  J. Meixensberger, E. Kunze, E. Barcsay, A. Vaeth, and K. Roosen, “Clinical cerebral microdialysis: brain metabolism and brain tissue oxygenation after acute brain injury,” Neurological Research, vol. 23, no. 8, pp. 801–806, 2001.
[13]  A. V?th, E. Kunze, K. Roosen, and J. Meixensberger, “Therapeutic aspects of brain tissue pO2 monitoring after subarachnoid hemorrhage,” Acta Neurochirurgica, no. 81, pp. 307–309, 2002.
[14]  M. Jaeger, M. U. Schuhmann, M. Soehle, C. Nagel, and J. Meixensberger, “Continuous monitoring of cerebrovascular autoregulation after subarachnoid hemorrhage by brain tissue oxygen pressure reactivity and its relation to delayed cerebral infarction,” Stroke, vol. 38, no. 3, pp. 981–986, 2007.
[15]  A. Cerejo, P. A. Silva, A. Vilarinho, C. Dias, and R. Vaz, “Intraoperative brain oxygenation monitoring and vasospasm in aneurysmal subarachnoid hemorrhage,” Neurological Research, vol. 34, pp. 181–186, 2012.
[16]  J. Meixensberger, A. Vath, M. Jaeger, E. Kunze, J. Dings, and K. Roosen, “Monitoring of brain tissue oxygenation following severe subarachnoid hemorrhage,” Neurological Research, vol. 25, no. 5, pp. 445–450, 2003.
[17]  R. Ramakrishna, M. Stiefel, J. Udoetuk et al., “Brain oxygen tension and outcome in patients with aneurysmal subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 109, pp. 1075–1082, 2008.
[18]  W. M. Coplin, G. E. O'Keefe, M. Sean Grady et al., “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery, vol. 41, no. 1, pp. 101–109, 1997.
[19]  N. S. Heran, S. J. Hentschel, and B. D. Toyota, “Jugular bulb oximetry for prediction of vasospasm following subarachnoid hemorrhage,” Canadian Journal of Neurological Sciences, vol. 31, no. 1, pp. 80–86, 2004.
[20]  G. Rosenthal, R. O. Sanchez-Mejia, N. Phan, J. C. Hemphill, C. Martin, and G. T. Manley, “Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury: clinical article,” Journal of Neurosurgery, vol. 114, no. 1, pp. 62–70, 2011.
[21]  P. Vajkoczy, P. Horn, C. Thome, E. Munch, and P. Schmiedek, “Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 98, no. 6, pp. 1227–1234, 2003.
[22]  T. Mutoh, T. Ishikawa, A. Suzuki, and N. Yasui, “Continuous cardiac output and near-infrared spectroscopy monitoring to assist in management of symptomatic cerebral vasospasm after subarachnoid hemorrhage,” Neurocritical Care, vol. 13, no. 3, pp. 331–338, 2010.
[23]  C. Zweifel, G. Castellani, M. Czosnyka et al., “Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage,” Stroke, vol. 41, no. 9, pp. 1963–1968, 2010.
[24]  A. Brawanski, R. Faltermeier, R. D. Rothoerl, and C. Woertgen, “Comparison of near-infrared spectroscopy and tissue Po2 time series in patients after severe head injury and aneurysmal subarachnoid hemorrhage,” Journal of Cerebral Blood Flow and Metabolism, vol. 22, no. 5, pp. 605–611, 2002.
[25]  N. Yokose, K. Sakatani, Y. Murata et al., “Bedside assessment of cerebral vasospasms after subarachnoid hemorrhage by near infrared time-resolved spectroscopy,” Advances in Experimental Medicine and Biology, vol. 662, pp. 505–511, 2010.
[26]  K. Yoshitani, M. Kawaguchi, N. Miura et al., “Effects of hemoglobin concentration, skull thickness, and the area of the cerebrospinal fluid layer on near-infrared spectroscopy measurements,” Anesthesiology, vol. 106, no. 3, pp. 458–462, 2007.
[27]  K. Kishi, M. Kawaguchi, K. Yoshitani, T. Nagahata, and H. Furuya, “Influence of patient variables and sensor location on regional cerebral oxygen saturation measured by INVOS 4100 near-infrared spectrophotometers,” Journal of Neurosurgical Anesthesiology, vol. 15, no. 4, pp. 302–306, 2003.
[28]  P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke, vol. 32, no. 11, pp. 2492–2499, 2001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413