全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Estrogen Receptor Joins Other Cancer Biomarkers as a Predictor of Outcome

DOI: 10.1155/2013/479541

Full-Text   Cite this paper   Add to My Lib

Abstract:

Endometrial cancer, the most common gynecologic malignancy in the United States, is on the rise, and survival is worse today than 40 years ago. In order to improve the outcomes, better biomarkers that direct the choice of therapy are urgently needed. In this review, we explore the estrogen receptor as the most studied biomarker and the best predictor for response for endometrial cancer reported to date. 1. Endometrial Cancer as a Hormonally Regulated Disease Endometrial cancer is the most common gynecologic malignancy in the United States, with an estimated 47,130 cases and over 8,500 deaths expected in 2013. The disease is on the rise and, unlike cancers arising in most other sites, five-year survival is worse today than in 1975 (87% in 1975–77; 83% in 2003–08) [1]. Biomarkers that can be used to guide treatment selection are urgently needed in order to address this alarming trend of decreasing survival. The purpose of this paper is to review the most consistently studied marker for response to therapy on clinical trials in endometrial cancer, the estrogen receptor (ER), and to highlight new information linking its expression to the outcomes. Estrogen binds to at least three major classes of receptors, ER- , ER- , and GPR30 (Figure 1). ER- predominates in the endometrium and is the best studied of the three. 17 -OH-estradiol is the most active ligand and, upon binding to ER- , causes the transactivation of numerous growth-promoting genes, including growth factors such as epidermal growth factor (EGF) and its receptor (EGFR), insulin-like growth factor-1 (IGF-1), and growth-enhancing protooncogenes such as c-fos and c-myc [2–13]. Most relevant for this discussion are growth factors such as EGF, vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and IGF. These ligands, in turn, activate cognate growth factor receptors, leading to multiple signaling cascades which drive cellular proliferation. Figure 1: Hormone receptors in endometrial tumors. In ER- dependent tumors (left side), estrogen induces growth factors and PR through ER- . This creates a positive feedback loop between ER- and growth factor signaling. However, progesterone (P4), when bound to PR, downregulates ER and PR. In addition, MAPK activation downstream of growth factor signaling results in phosphorylation of ER and PR and the ligand-dependent loss of PR and ER proteins by ubiquitination-mediated proteasomal degradation. ER- and PR levels are increased again at the level of transcription by estrogen stimulation. Hence, the growth of these tumors is dependent upon

References

[1]  Cancer Facts and Figures, 2013, http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-036845.pdf.
[2]  Y. M. Huet-Hudson, C. Chakraborty, S. K. De, Y. Suzuki, G. K. Andrews, and S. K. Dey, “Estrogen regulates the synthesis of epidermal growth factor in mouse uterine epithelial cells,” Molecular Endocrinology, vol. 4, no. 3, pp. 510–523, 1990.
[3]  R. B. Lingham, G. M. Stancel, and D. S. Loose-Mitchell, “Estrogen regulation of epidermal growth factor receptor messenger ribonucleic acid,” Molecular Endocrinology, vol. 2, no. 3, pp. 230–235, 1988.
[4]  L. J. Murphy, L. C. Murphy, and H. G. Friesen, “Estrogen induces insulin-like growth factor-I expression in the rat uterus,” Molecular Endocrinology, vol. 1, no. 7, pp. 445–450, 1987.
[5]  A. Weisz and F. Bresciani, “Estrogen induces expression of c-fos and c-myc protooncogenes in rat uterus,” Molecular Endocrinology, vol. 2, no. 9, pp. 816–824, 1988.
[6]  A. H. Charpentier, A. K. Bednarek, R. L. Daniel et al., “Effects of estrogen on global gene expression: identification of novel targets of estrogen action,” Cancer Research, vol. 60, no. 21, pp. 5977–5983, 2000.
[7]  K. R. Coser, J. Chesnes, J. Hur, S. Ray, K. J. Isselbacher, and T. Shioda, “Global analysis of ligand sensitivity of estrogen inducible and suppressible genes in MCF7/BUS breast cancer cells by DNA microarray,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 13994–13999, 2003.
[8]  J. Frasor, J. M. Danes, B. Komm, K. C. N. Chang, C. Richard Lyttle, and B. S. Katzenellenbogen, “Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype,” Endocrinology, vol. 144, no. 10, pp. 4562–4574, 2003.
[9]  M. Kininis, B. S. Chen, A. G. Diehl et al., “Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters,” Molecular and Cellular Biology, vol. 27, no. 14, pp. 5090–5104, 2007.
[10]  C.-Y. Lin, V. B. Vega, J. S. Thomsen et al., “Whole-genome cartography of estrogen receptor alpha binding sites,” PLoS Genetics, vol. 3, no. 6, article e87, 2007.
[11]  J. D. Stender, J. Frasor, B. Komm, K. C. N. Chang, W. L. Kraus, and B. S. Katzenellenbogen, “Estrogen-regulated gene networks in human breast cancer cells: involvement of E2F1 in the regulation of cell proliferation,” Molecular Endocrinology, vol. 21, no. 9, pp. 2112–2123, 2007.
[12]  J. S. Carroll, C. A. Meyer, J. Song et al., “Genome-wide analysis of estrogen receptor binding sites,” Nature Genetics, vol. 38, no. 11, pp. 1289–1297, 2006.
[13]  W.-J. Welboren, M. A. Van Driel, E. M. Janssen-Megens et al., “ChIP-Seq of ERα and RNA polymerase II defines genes differentially responding to ligands,” EMBO Journal, vol. 28, no. 10, pp. 1418–1428, 2009.
[14]  M. E. Sherman, S. Sturgeon, L. Brinton, and R. J. Kurman, “Endometrial cancer chemoprevention: implications of diverse pathways of carcinogenesis,” Journal of Cellular Biochemistry, vol. 59, no. 23, pp. 160–164, 1995.
[15]  T. Enomoto, M. Inoue, A. O. Perantoni et al., “K-ras activation in premalignant and malignant epithelial lesions of the human uterus,” Cancer Research, vol. 51, no. 19, pp. 5308–5314, 1991.
[16]  J. I. Risinger, A. K. Hayes, A. Berchuck, and J. C. Barrett, “PTEN/MMAC1 mutations in endometrial cancers,” Cancer Research, vol. 57, no. 21, pp. 4736–4738, 1997.
[17]  G. L. Mutter, M.-C. Lin, J. T. Fitzgerald et al., “Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers,” Journal of the National Cancer Institute, vol. 92, no. 11, pp. 924–931, 2000.
[18]  A. J. Ryan, B. Susil, T. W. Jobling, and M. K. Oehler, “Endometrial cancer,” Cell and Tissue Research, vol. 322, no. 1, pp. 53–61, 2005.
[19]  C. Kandoth, N. Schultz, A. D. Cherniack, et al., “Integrated genomic characterization of endometrial carcinoma,” Nature, vol. 497, no. 7447, pp. 67–73.
[20]  “Integrated genomic analyses of ovarian carcinoma,” Nature, vol. 474, no. 7353, pp. 609–615, 2011.
[21]  H. Liang, L. W. Cheung, J. Li, et al., “Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer,” Genome Research, vol. 22, no. 11, pp. 2120–2129, 2012.
[22]  U. M. Moll, E. Chalas, M. Auguste, D. Meaney, and J. Chumas, “Uterine papillary serous carcinoma evolves via a p53-driven pathway,” Human Pathology, vol. 27, no. 12, pp. 1295–1300, 1996.
[23]  W. Zheng, P. Cao, M. Zheng, E. E. Kramer, and T. A. Godwin, “p53 Overexpression and bcl-2 persistence in endometrial carcinoma: comparison of papillary serous and endometrioid subtypes,” Gynecologic Oncology, vol. 61, no. 2, pp. 167–174, 1996.
[24]  S. Kounelis, N. Kapranos, E. Kouri, D. Coppola, H. Papadaki, and M. W. Jones, “Immunohistochemical profile of endometrial adenocarcinoma: a study of 61 cases and review of the literature,” Modern Pathology, vol. 13, no. 4, pp. 379–388, 2000.
[25]  K. K. Leslie, M.-P. Stein, N. S. Kumar et al., “Progesterone receptor isoform identification and subcellular localization in endometrial cancer,” Gynecologic Oncology, vol. 96, no. 1, pp. 32–41, 2005.
[26]  S. Zhao, M. Choi, J. D. Overton, et al., “Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma,” Proceedings of the National Academy of Sciences of USA, vol. 110, no. 8, pp. 2916–2921, 2013.
[27]  M. Le Gallo, A. J. O'Hara, M. L. Rudd, et al., “Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes,” Nature Genetics, vol. 44, no. 12, pp. 1310–1315, 2012.
[28]  J. H?ring, M. Skrzypczak, A. Stegerer et al., “Estrogen receptor β transcript variants associate with oncogene expression in endometrial cancer,” International Journal of Molecular Medicine, vol. 29, no. 6, pp. 1127–1136, 2012.
[29]  V. Jongen, J. Bri?t, R. de Jong et al., “Expression of estrogen receptor-alpha and -beta and progesterone receptor-A and -B in a large cohort of patients with endometrioid endometrial cancer,” Gynecologic Oncology, vol. 112, no. 3, pp. 537–542, 2009.
[30]  I. Mylonas, J. Makovitzky, K. Friese, and U. Jeschke, “Immunohistochemical labelling of steroid receptors in normal and malignant human endometrium,” Acta Histochemica, vol. 111, no. 4, pp. 349–359, 2009.
[31]  C. M. Revankar, C. M. Vines, D. F. Cimino, and E. R. Prossnitz, “Arrestins block G protein-coupled receptor-mediated apoptosis,” Journal of Biological Chemistry, vol. 279, no. 23, pp. 24578–24584, 2004.
[32]  H. O. Smith, K. K. Leslie, M. Singh et al., “GPR30: a novel indicator of poor survival for endometrial carcinoma,” American Journal of Obstetrics and Gynecology, vol. 196, no. 4, pp. 386.e1–386.e11, 2007.
[33]  E. J. Filardo, “Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer,” Journal of Steroid Biochemistry and Molecular Biology, vol. 80, no. 2, pp. 231–238, 2002.
[34]  E. J. Filardo, J. A. Quinn, A. Raymond Frackelton Jr., and K. I. Bland, “Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis,” Molecular Endocrinology, vol. 16, no. 1, pp. 70–84, 2002.
[35]  E. R. Prossnitz, “Novel roles for arrestins in the post-endocytic trafficking of G protein-coupled receptors,” Life Sciences, vol. 75, no. 8, pp. 893–899, 2004.
[36]  J. F. Savouret, A. Chauchereau, M. Misrahi et al., “The progesterone receptor: biological effects of progestins and antiprogestins,” Human Reproduction, vol. 9, no. 1, pp. 7–11, 1994.
[37]  J.-F. Savouret, M. Rauch, G. Redeuilh et al., “Interplay between estrogens, progestins, retinoic acid and AP-1 on a single regulatory site in the progesterone receptor gene,” Journal of Biological Chemistry, vol. 269, no. 46, pp. 28955–28962, 1994.
[38]  M. Singh, R. J. Zaino, V. J. Filiaci, and K. K. Leslie, “Relationship of estrogen and progesterone receptors to clinical outcome in metastatic endometrial carcinoma: A Gynecologic Oncology Group Study,” Gynecologic Oncology, vol. 106, no. 2, pp. 325–333, 2007.
[39]  D. Dai, E. S. Litman, E. Schonteich, and K. K. Leslie, “Progesterone regulation of activating protein-1 transcriptional activity: a possible mechanism of progesterone inhibition of endometrial cancer cell growth,” Journal of Steroid Biochemistry and Molecular Biology, vol. 87, no. 2-3, pp. 123–131, 2003.
[40]  D. Dai, D. M. Wolf, E. S. Litman, M. J. White, and K. K. Leslie, “Progesterone inhibits human endometrial cancer cell growth and invasiveness: down-regulation of cellular adhesion molecules through progesterone B receptors1,” Cancer Research, vol. 62, no. 3, pp. 881–886, 2002.
[41]  D. Dai, N. S. Kumar, D. M. Wolf, and K. K. Leslie, “Molecular tools to reestablish progestin control of endometrial cancer cell proliferation,” American Journal of Obstetrics and Gynecology, vol. 184, no. 5, pp. 790–797, 2001.
[42]  S. Davies, D. Dai, G. Pickett, and K. K. Leslie, “Gene regulation profiles by progesterone and dexamethasone in human endometrial cancer Ishikawa H cells,” Gynecologic Oncology, vol. 101, no. 1, pp. 62–70, 2006.
[43]  S. Davies, D. Dai, D. M. Wolf, and K. K. Leslie, “Immunomodulatory and transcriptional effects of progesterone through progesterone a and B receptors in Hec50co poorly differentiated endometrial cancer cells,” Journal of the Society for Gynecologic Investigation, vol. 11, no. 7, pp. 494–499, 2004.
[44]  S. Yang, K. W. Thiel, K. De Geest, and K. K. Leslie, “Endometrial cancer: reviving progesterone therapy in the molecular age,” Discovery Medicine, vol. 12, no. 64, pp. 205–212, 2011.
[45]  S. Yang, K. W. Thiel, and K. K. Leslie, “Progesterone: the ultimate endometrial tumor suppressor,” Trends in Endocrinology and Metabolism, vol. 22, no. 4, pp. 145–152, 2011.
[46]  C. Aghajanian, M. W. Sill, K. M. Darcy et al., “Phase II trial of bevacizumab in recurrent or persistent endometrial cancer: A Gynecologic Oncology Group Study,” Journal of Clinical Oncology, vol. 29, no. 16, pp. 2259–2265, 2011.
[47]  A. A. Garcia, M. W. Sill, H. A. Lankes et al., “A phase II evaluation of lapatinib in the treatment of persistent or recurrent epithelial ovarian or primary peritoneal carcinoma: A Gynecologic Oncology Group Study,” Gynecologic Oncology, vol. 124, no. 3, pp. 569–574, 2012.
[48]  K. K. Leslie, M. W. Sill, E. Fischer, et al., “A phase II evaluation of gefitinib in the treatment of persistent or recurrent endometrial cancer: a Gynecologic Oncology Group study,” Gynecologic Oncology, vol. 129, no. 3, pp. 486–494, 2013.
[49]  K. K. Leslie, M. W. Sill, H. A. Lankes, et al., “Lapatinib and potential prognostic value of EGFR mutations in a Gynecologic Oncology Group phase II trial of persistent or recurrent endometrial cancer,” Gynecologic Oncology, vol. 127, no. 2, pp. 345–350, 2012.
[50]  M. Singh, K. M. Darcy, W. E. Brady et al., “Cadherins, catenins and cell cycle regulators: impact on survival in a Gynecologic Oncology Group phase II endometrial cancer trial,” Gynecologic Oncology, vol. 123, no. 2, pp. 320–328, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413