全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Natural History of Uterine Leiomyomas: Morphometric Concordance with Concepts of Interstitial Ischemia and Inanosis

DOI: 10.1155/2013/285103

Full-Text   Cite this paper   Add to My Lib

Abstract:

Based upon our morphologic observations, we hypothesize and also provide morphometric evidence for the occurrence of progressive developmental changes in many uterine fibroids, which can be arbitrarily divided into 4 phases. These developmental phases are related to the ongoing production of extracellular collagenous matrix, which eventually exceeds the degree of angiogenesis, resulting in the progressive separation of myocytes from their blood supply and a condition of interstitial ischemia. The consequence of this process of slow ischemia with nutritional and oxygen deprivation is a progressive myocyte atrophy (or inanition), culminating in cell death, a process that we refer to as inanosis. The studies presented here provide quantitative and semiquantitative evidence to support the concept of the declining proliferative activity as the collagenous matrix increases and the microvascular density decreases. 1. Introduction We hypothesize that many uterine leiomyomas (fibroids) undergo progressive obsolescence and eventual involution, largely as a result of the excessive elaboration of collagen into the interstitial matrix, thereby increasing the distance between tumor myocytes and their blood supply. Since the smooth muscle cells of fibroid blood vessels mirror the phenotypic transformational changes of the tumor myocytes, the blood vessels of fibroids also become progressively more fibrotic and hyalinized. Thus, tumor myocytes are subjected to a reduced supply of essential nutrients and oxygen as a consequence of both vascular and interstitial ischemia. If the growth of fibroid tumors was solely dictated by those genetic and epigenetic changes that promote an increased proliferative rate, then the tumor myocytes should continue to proliferate and the tumor would continue to grow. On the other hand, if vascular and interstitial ischemia do develop within these tumors as the deposition of collagen continues, the proliferative capacity of myocytes would probably be diminished as the diffusion of nutrients and oxygen is impeded in both the fibrotic, thickened vessels and the fibrotic interstitium. In addition, if the rate of angiogenesis is not equivalent to or greater than the rate of fibrogenesis, the tumor myocytes would be subjected to the additional stress of an increased distance between myocytes and capillaries (reduced microvascular density). With these concepts of excessive production and accumulation of collagen, reduced microvascular density, and combined vascular and interstitial ischemia in mind, we hypothesized that, in general, tumors

References

[1]  A. B. Moore, G. P. Flake, C. D. Swartz et al., “Association of race, age and body mass index with gross pathology of uterine fibroids,” Journal of Reproductive Medicine for the Obstetrician and Gynecologist, vol. 53, no. 2, pp. 90–96, 2008.
[2]  M. R. . Hendrickson and R. L. Kempson, “Uterus and fallopian tubes,” in Histology for Pathologists, S. S. Sternberg, Ed., Raven Press, New York, NY, USA, 1992.
[3]  M. H. . Ross, L. J. Romrell, and G. I. Kaye, “Muscle Tissue,” in Histology, Text and Atlas, pp. 214–255, Lippincott, Williams and Wilkins, Philadelphia, Pa, USA, 3rd edition, 1995.
[4]  D. Dixon, G. P. Flake, A. B. Moore et al., “Cell proliferation and apoptosis in human uterine leiomyomas and myometria,” Virchows Archiv, vol. 441, no. 1, pp. 53–62, 2002.
[5]  T. E. Walshe and P. A. D'Amore, “The role of hypoxia in vascular injury and repair,” Annual Review of Pathology, vol. 3, pp. 615–643, 2008.
[6]  J. E. Hall, “The microcirculation,” in Guyton and Hall Textbook of Medical Physiology, pp. 162–174, Saunders Elsevier, Philadelphia, Pa, USA, 10th edition, 2000.
[7]  B. M. Fu, R. H. Adamson, and F. E. Curry, “Determination of microvessel permeability and tissue diffusion coefficient of solutes by laser scanning confocal microscopy,” Journal of Biomechanical Engineering, vol. 127, no. 2, pp. 270–278, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413