全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Protein Kinase Cα Modulates Estrogen-Receptor-Dependent Transcription and Proliferation in Endometrial Cancer Cells

DOI: 10.1155/2013/537479

Full-Text   Cite this paper   Add to My Lib

Abstract:

Endometrial cancer is the most common invasive gynecologic malignancy in developed countries. The most prevalent endometrioid tumors are linked to excessive estrogen exposure and hyperplasia. However, molecular mechanisms and signaling pathways underlying their etiology and pathophysiology remain poorly understood. We have shown that protein kinase Cα (PKCα) is aberrantly expressed in endometrioid tumors and is an important mediator of endometrial cancer cell survival, proliferation, and invasion. In this study, we demonstrate that expression of active, myristoylated PKCα conferred ligand-independent activation of estrogen-receptor- (ER-) dependent promoters and enhanced responses to estrogen. Conversely, knockdown of PKCα reduced ER-dependent gene expression and inhibited estrogen-induced proliferation of endometrial cancer cells. The ability of PKCα to potentiate estrogen activation of ER-dependent transcription was attenuated by inhibitors of phosphoinositide 3-kinase (PI3K) and Akt. Evidence suggests that PKCα and estrogen signal transduction pathways functionally interact, to modulate ER-dependent growth and transcription. Thus, PKCα signaling, via PI3K/Akt, may be a critical element of the hyperestrogenic environment and activation of ER that is thought to underlie the development of estrogen-dependent endometrial hyperplasia and malignancy. PKCα-dependent pathways may provide much needed prognostic markers of aggressive disease and novel therapeutic targets in ER positive tumors. 1. Introduction Endometrial cancer is the most common invasive gynecological malignancy in the United States, accounting for 45,000 new cancer cases and over 7,500 deaths annually [1]. However, molecular mechanisms underlying its etiology and pathophysiology are poorly understood. Endometrial carcinomas are derived from glandular epithelium and typically divided into two subtypes based on clinical, histological, and molecular characteristics [2, 3]. Type I tumors, comprising 80% of cases, are generally well or moderately differentiated with endometrioid morphology and are associated with chronic unopposed estrogen exposure and hyperplasia. By contrast, type II tumors are more heterogeneous, poorly differentiated and may be estrogen independent, arising in a background of atrophic endometrium [2, 4]. The prevalence of advanced stage, high-grade tumors, of both types, with recurrent metastatic disease is increasing [5, 6]. Such cancers typically have a poorer prognosis and are refractory to current therapeutic regimens [7]. Endometrioid tumors retain expression of estrogen

References

[1]  A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA: Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011.
[2]  J. L. Hecht and G. L. Mutter, “Molecular and pathologic aspects of endometrial carcinogenesis,” Journal of Clinical Oncology, vol. 24, no. 29, pp. 4783–4791, 2006.
[3]  S. F. Lax, “Molecular genetic pathways in various types of endometrial carcinoma: from a phenotypical to a molecular-based classification,” Virchows Archiv, vol. 444, no. 3, pp. 213–223, 2004.
[4]  F. Amant, P. Moerman, P. Neven, D. Timmerman, E. Van Limbergen, and I. Vergote, “Endometrial cancer,” Lancet, vol. 366, no. 9484, pp. 491–505, 2005.
[5]  V. Masciullo, G. Amadio, D. Lo Russo, et al., “Controversies in the management of endometrial cancer,” Obstetrics and Gynecology International, vol. 2010, Article ID 638165, 7 pages, 2010.
[6]  S. M. Ueda, D. S. Kapp, M. K. Cheung et al., “Trends in demographic and clinical characteristics in women diagnosed with corpus cancer and their potential impact on the increasing number of deaths,” American Journal of Obstetrics and Gynecology, vol. 198, no. 2, pp. 218.e1–218.e6, 2008.
[7]  L. H. Ellenson and T.-C. Wu, “Focus on endometrial and cervical cancer,” Cancer Cell, vol. 5, no. 6, pp. 533–538, 2004.
[8]  A. J. Ryan, B. Susil, T. W. Jobling, and M. K. Oehler, “Endometrial cancer,” Cell and Tissue Research, vol. 322, no. 1, pp. 53–61, 2005.
[9]  J. Watanabe, Y. Kamata, N. Seo, I. Okayasu, and H. Kuramoto, “Stimulatory effect of estrogen on the growth of endometrial cancer cells is regulated by cell-cycle regulators,” Journal of Steroid Biochemistry and Molecular Biology, vol. 107, no. 3–5, pp. 163–171, 2007.
[10]  R. C. Dardes, J. M. Schafer, S. T. Pearce, C. Osipo, B. Chen, and V. C. Jordan, “Regulation of estrogen target genes and growth by selective estrogen-receptor modulators in endometrial cancer cells,” Gynecologic Oncology, vol. 85, no. 3, pp. 498–506, 2002.
[11]  A. Di Cristofano and L. H. Ellenson, “Endometrial carcinoma,” Annual Review of Pathology, vol. 2, pp. 57–85, 2007.
[12]  A. Berchuck and J. Boyd, “Molecular basis of endometrial cancer,” Cancer, vol. 76, supplement 10, pp. 2034–2040, 1995.
[13]  M. Llauradó, A. Ruiz, B. Majem, et al., “Molecular bases of endometrial cancer: new roles for new actors in the diagnosis and the therapy of the disease,” Molecular and Cellular Endocrinology, vol. 358, no. 2, pp. 244–255, 2012.
[14]  A. C. Newton, “Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions,” Chemical Reviews, vol. 101, no. 8, pp. 2353–2364, 2001.
[15]  Y. Nishizuka, “The protein kinase C family and lipid mediators for transmembrane signaling and cell regulation,” Alcoholism Clinical and Experimental Research, vol. 25, no. 5, pp. 3s–7s, 2001.
[16]  A. Toker, “Signaling through protein kinase C,” Frontiers in Bioscience, vol. 3, pp. D1134–D1147, 1998.
[17]  D. A. Tonetti, R. O'Regan, S. Tanjore, G. England, and V. C. Jordan, “Antiestrogen stimulated human endometrial cancer growth: laboratory and clinical considerations,” Journal of Steroid Biochemistry and Molecular Biology, vol. 65, no. 1–6, pp. 181–189, 1998.
[18]  H. Wu, Y. Chen, J. Liang et al., “Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis,” Nature, vol. 438, no. 7070, pp. 981–987, 2005.
[19]  E. M. Reno, J. M. Haughian, I. K. Dimitrova, T. A. Jackson, K. R. Shroyer, and A. P. Bradford, “Analysis of protein kinase C delta (PKCδ) expression in endometrial tumors,” Human Pathology, vol. 39, no. 1, pp. 21–29, 2008.
[20]  J. M. Haughian, E. M. Reno, A. M. Thorne, and A. P. Bradford, “Protein kinase C alpha-dependent signaling mediates endometrial cancer cell growth and tumorigenesis,” International Journal of Cancer, vol. 125, no. 11, pp. 2556–2564, 2009.
[21]  J. M. Haughian and A. P. Bradford, “Protein kinase C alpha (PKCα) regulates growth and invasion of endometrial cancer cells,” Journal of Cellular Physiology, vol. 220, no. 1, pp. 112–118, 2009.
[22]  J. M. Haughian, T. A. Jackson, D. M. Koterwas, and A. P. Bradford, “Endometrial cancer cell survival and apoptosis is regulated by protein kinase C α and δ,” Endocrine-Related Cancer, vol. 13, no. 4, pp. 1251–1267, 2006.
[23]  C. Korch, M. A. Spillman, T. A. Jackson, et al., “DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination,” Gynecologic Oncology, vol. 127, no. 1, pp. 241–248, 2012.
[24]  D. Lu, Y. Kiriyama, K. Y. Lee, and V. Giguère, “Transcriptional regulation of the estrogen-inducible pS2 breast cancer marker gene by the ERR family of orphan nuclear receptors,” Cancer Research, vol. 61, no. 18, pp. 6755–6761, 2001.
[25]  M. Kudoh, Y. Susaki, Y. Ideyama et al., “Inhibitory effect of a novel non-steroidal aromatase inhibitor, YM511 on the proliferation of MCF-7 human breast cancer cell,” Journal of Steroid Biochemistry and Molecular Biology, vol. 58, no. 2, pp. 189–194, 1996.
[26]  N. Fujimoto, N. Jinno, and S. Kitamura, “Activation of estrogen response element dependent transcription by thyroid hormone with increase in estrogen receptor levels in a rat pituitary cell line, GH3,” Journal of Endocrinology, vol. 181, no. 1, pp. 77–83, 2004.
[27]  R. R. Hodges, I. Raddassi, D. Zoukbri, A. Toker, A. Kazlauskas, and D. A. Dartt, “Effect of overexpression of constitutively active PKCα on rat lacrimal gland protein secretion,” Investigative Ophthalmology and Visual Science, vol. 45, no. 11, pp. 3974–3981, 2004.
[28]  T. A. Jackson, R. E. Schweppe, D. M. Koterwas, and A. P. Bradford, “Fibroblast growth factor activation of the rat PRL promoter is mediated by PKCδ,” Molecular Endocrinology, vol. 15, no. 9, pp. 1517–1528, 2001.
[29]  A. L. Bookout, C. L. Cummins, D. J. Mangelsdorf, J. M. Pesola, and M. F. Kramer, “High-throughput real-time quantitative reverse transcription PCR,” in Current Protocols in Molecular Biology, vol. 73, chapter 15, pp. 15.8.1–15.8.28, 2006.
[30]  S. Y. Wang, B. S. Ahn, R. Harris, S. K. Nordeen, and D. J. Shapiro, “Fluorescence anisotropy microplate assay for analysis of steroid receptor-DNA interactions,” BioTechniques, vol. 37, no. 5, pp. 807–817, 2004.
[31]  E. Demirpence, A. Semlali, J. Oliva et al., “An estrogen-responsive element-targeted histone deacetylase enzyme has an antiestrogen activity that differs from that of hydroxytamoxifen,” Cancer Research, vol. 62, no. 22, pp. 6519–6528, 2002.
[32]  L. Albitar, G. Pickett, M. Morgan, S. Davies, and K. K. Leslie, “Models representing type I and type II human endometrial cancers: Ishikawa H and Hec50co cells,” Gynecologic Oncology, vol. 106, no. 1, pp. 52–64, 2007.
[33]  A. Vilgelm, Z. Lian, H. Wang et al., “Akt-mediated phosphorylation and activation of estrogen receptor α is required for endometrial neoplastic transformation in Pten+/- mice,” Cancer Research, vol. 66, no. 7, pp. 3375–3380, 2006.
[34]  Z. Lian, P. De Luca, and A. Di Cristofano, “Gene expression analysis reveals a signature of estrogen receptor activation upon loss of Pten in a mouse model of endometrial cancer,” Journal of Cellular Physiology, vol. 208, no. 2, pp. 255–266, 2006.
[35]  S. E. Ghayad and P. A. Cohen, “Inhibitors of the PI3K/Akt/mTOR pathway: new hope for breast cancer patients,” Recent Patents on Anti-Cancer Drug Discovery, vol. 5, no. 1, pp. 29–57, 2010.
[36]  J. Bain, L. Plater, M. Elliott et al., “The selectivity of protein kinase inhibitors: a further update,” Biochemical Journal, vol. 408, no. 3, pp. 297–315, 2007.
[37]  T. Shiozawa, T. Miyamoto, H. Kashima, K. Nakayama, T. Nikaido, and I. Konishi, “Estrogen-induced proliferation of normal endometrial glandular cells is initiated by transcriptional activation of cyclin D1 via binding of c-Jun to an AP-1 sequence,” Oncogene, vol. 23, no. 53, pp. 8603–8610, 2004.
[38]  H. Kashima, T. Shiozawa, T. Miyamoto et al., “Autocrine stimulation of IGF1 in estrogen-induced growth of endometrial carcinoma cells: involvement of the mitogen-activated protein kinase pathway followed by up-regulation of cyclin D1 and cyclin E,” Endocrine-Related Cancer, vol. 16, no. 1, pp. 113–122, 2009.
[39]  C. F. Holinka, Y. Anzai, H. Hata, N. Kimmel, H. Kuramoto, and E. Gurpide, “Proliferation and responsiveness to estrogen of human endometrial cancer cells under serum-free culture conditions,” Cancer Research, vol. 49, no. 12, pp. 3297–3301, 1989.
[40]  C. D. Albright and D. G. Kaufman, “Lactoferrin: a tamoxifen-responsive protein in normal and malignant human endometrial cells in culture,” Experimental and Molecular Pathology, vol. 70, no. 2, pp. 71–76, 2001.
[41]  J. Fujimoto, M. Hori, S. Ichigo, S. Morishita, and T. Tamaya, “Clinical implication of fos and jun expressions and protein kinase activity in endometrial cancers,” European Journal of Gynaecological Oncology, vol. 16, no. 2, pp. 138–146, 1995.
[42]  J. Fujimoto, M. Hori, S. Ichigo, S. Morishita, and T. Tamaya, “Estrogen induces expression of c-fos and c-jun via activation of protein kinase C in an endometrial cancer cell line and fibroblasts derived from human uterine endometrium,” Gynecological Endocrinology, vol. 10, no. 2, pp. 109–118, 1996.
[43]  H. Inadera, “Estrogen-induced genes, WISP-2 and pS2, respond divergently to protein kinase pathway,” Biochemical and Biophysical Research Communications, vol. 309, no. 2, pp. 272–278, 2003.
[44]  J. P. Palazzo, W. E. Mercer, A. J. Kovatich, and M. Mchugh, “Immunohistochemical localization of p21(WAF1/CIP1) in normal, hyperplastic, and neoplastic uterine tissues,” Human Pathology, vol. 28, no. 1, pp. 60–66, 1997.
[45]  J. M. A. Pijnenborg, L. van de Broek, G. C. Dam de Veen et al., “TP53 overexpression in recurrent endometrial carcinoma,” Gynecologic Oncology, vol. 100, no. 2, pp. 397–404, 2006.
[46]  M. Kawaguchi, J. Watanabe, M. Hamano et al., “Medroxyprogesterone acetate stimulates cdk inhibitors, p21 and p27, in endometrial carcinoma cells transfected with progesterone receptor-B cDNA,” European Journal of Gynaecological Oncology, vol. 27, no. 1, pp. 33–38, 2006.
[47]  D. A. Altomare and J. R. Testa, “Perturbations of the AKT signaling pathway in human cancer,” Oncogene, vol. 24, no. 50, pp. 7455–7464, 2005.
[48]  M. P. Hayes, H. Wang, R. Espinal-Witter et al., “PIK3CA and PTEN mutations in uterine endometrioid carcinoma and complex atypical hyperplasia,” Clinical Cancer Research, vol. 12, no. 20, pp. 5932–5935, 2006.
[49]  E. Latta and W. B. Chapman, “PTEN mutations and evolving concepts in endometrial neoplasia,” Current Opinion in Obstetrics and Gynecology, vol. 14, no. 1, pp. 59–65, 2002.
[50]  N. L. Weigel and N. L. Moore, “Steroid receptor phosphorylation: a key modulator of multiple receptor functions,” Molecular Endocrinology, vol. 21, no. 10, pp. 2311–2319, 2007.
[51]  N. L. Weigel and N. L. Moore, “Kinases and protein phosphorylation as regulators of steroid hormone action,” Nuclear Receptor Signaling, vol. 5, article e005, 2007.
[52]  V. S. Likhite, F. Stossi, K. Kim, B. S. Katzenellenbogen, and J. A. Katzenellenbogen, “Kinase-specific phosphorylation of the estrogen receptor changes receptor interactions with ligand, deoxyribonucleic acid, and coregulators associated with alterations in estrogen and tamoxifen activity,” Molecular Endocrinology, vol. 20, no. 12, pp. 3120–3132, 2006.
[53]  J. Z. Yang, C. O'Flatharta, B. J. Harvey, and W. Thomas, “Membrane ERα-dependent activation of PKCα in endometrial cancer cells by estradiol,” Steroids, vol. 73, no. 11, pp. 1110–1122, 2008.
[54]  P. Chaudhry and E. Asselin, “Resistance to chemotherapy and hormone therapy in endometrial cancer,” Endocrine-Related Cancer, vol. 16, no. 2, pp. 363–380, 2009.
[55]  K. J. Dedes, D. Wetterskog, A. Ashworth, S. B. Kaye, and J. S. Reis-Filho, “Emerging therapeutic targets in endometrial cancer,” Nature Reviews Clinical Oncology, vol. 8, no. 5, pp. 261–271, 2011.
[56]  B. Weigelt and S. Banerjee, “Molecular targets and targeted therapeutics in endometrial cancer,” Current Opinion in Oncology, vol. 24, no. 5, pp. 554–563, 2012.
[57]  P. G. Goekjian and M. R. Jirousek, “Protein kinase C inhibitors as novel anticancer drugs,” Expert Opinion on Investigational Drugs, vol. 10, no. 12, pp. 2117–2140, 2001.
[58]  J. Hofmann, “Protein kinase C isozymes as potential targets for anticancer therapy,” Current Cancer Drug Targets, vol. 4, no. 2, pp. 125–146, 2004.
[59]  H. C. Swannie and S. B. Kaye, “Protein kinase C inhibitors,” Current Oncology Reports, vol. 4, no. 1, pp. 37–46, 2002.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133