全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Oxidative Stress in Alzheimer’s Disease: Why Did Antioxidant Therapy Fail?

DOI: 10.1155/2014/427318

Full-Text   Cite this paper   Add to My Lib

Abstract:

Alzheimer’s disease (AD) is the most common form of dementia in the elderly, with increasing prevalence and no disease-modifying treatment available yet. A remarkable amount of data supports the hypothesis that oxidative stress is an early and important pathogenic operator in AD. However, all clinical studies conducted to date did not prove a clear beneficial effect of antioxidant treatment in AD patients. In the current work, we review the current knowledge about oxidative stress in AD pathogeny and we suggest future paths that are worth to be explored in animal models and clinical studies, in order to get a better approach of oxidative imbalance in this inexorable neurodegenerative disease. 1. Introduction Alzheimer’s disease (AD) is the most common form of dementia and was carried by an estimated 35.6 million people in 2010 [1]. The number is expected to increase to about 115 million sufferers in year 2050. The challenges in AD research today include discovering methods to diagnose patients in an earlier stage and to find new treatments to prevent or cure the disease. There are some inherited forms of the AD, also known as Familial Alzheimer’s Disease (FAD), caused by mutations in one of these three genes: Amyloid Precursor Protein (APP), Presenilin-1, and Presenilin-2. These mutations are all linked to the overproduction of amyloidogenic forms of the amyloid-β (Aβ), a peptide that is generated by a sequential cleavage of APP by the β- and γ-secretases [2]. The majority of AD cases (more than 95%) are, however, sporadic and cannot be explained by deterministic mutations. It is hypothesised that sporadic AD results from a combination between environmental factors and risk genes. The most important risk gene is apolipoprotein E (ApoE), encoding an important molecule in lipid metabolism. ApoE has in humans three different isoforms, ε2, ε3, and ε4. The ε4 allele is associated with increased risk for AD, while ε2 is considered to be protective. People with one copy of the ε4 allele have approximately three times higher risk of getting the disease, while homozygotes have 12 times higher risk [3]. Symptoms of AD are characterized by progressive decline in cognitive abilities such as memory, mood, and behaviour, which leads to social and mental disability. The underlying pathophysiology of AD includes loss of neurons and synapses in the cerebral cortex and parts of the subcortical areas [4]. Apoptosis is thought to be one of the mechanisms that lead to cell death in AD [5, 6]. In addition to this, AD brains also harbour extracellular amyloid depositions

References

[1]  M. Prince, R. Bryce, E. Albanese, A. Wimo, W. Ribeiro, and C. P. Ferri, “The global prevalence of dementia: a systematic review and metaanalysis,” Alzheimer's and Dementia, vol. 9, article e2, pp. 63–75, 2013.
[2]  D. J. Selkoe, “Alzheimer's disease: genes, proteins, and therapy,” Physiological Reviews, vol. 81, no. 2, pp. 741–766, 2001.
[3]  L. A. Farrer, L. A. Cupples, J. L. Haines et al., “Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis,” Journal of the American Medical Association, vol. 278, no. 16, pp. 1349–1356, 1997.
[4]  G. L. Wenk, “Neuropathologic changes in Alzheimer's disease,” Journal of Clinical Psychiatry, vol. 64, supplement 9, pp. 7–10, 2003.
[5]  C. Stadelmann, T. L. Deckwerth, A. Srinivasan et al., “Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer's disease: evidence for apoptotic cell death,” The American Journal of Pathology, vol. 155, no. 5, pp. 1459–1466, 1999.
[6]  S. Albrecht, N. Bogdanovic, B. Ghetti, B. Winblad, and A. C. Leblanc, “Caspase-6 activation in familial Alzheimer disease brains carrying amyloid precursor protein or presenilin i or presenilin II mutations,” Journal of Neuropathology and Experimental Neurology, vol. 68, no. 12, pp. 1282–1293, 2009.
[7]  D. J. Selkoe, “The deposition of amyloid proteins in the aging mammalian brain: implications for Alzheimer's disease,” Annals of Medicine, vol. 21, no. 2, pp. 73–76, 1989.
[8]  I. Grundke-Iqbal, K. Iqbal, and M. Quinlan, “Microtubule-associated protein tau. A component of Alzheimer paired helical filaments,” Journal of Biological Chemistry, vol. 261, no. 13, pp. 6084–6089, 1986.
[9]  Z. Xiang, V. Haroutunian, L. Ho, D. Purohit, and G. M. Pasinetti, “Microglia activation in the brain as inflammatory biomarker of Alzheimer's disease neuropathology and clinical dementia,” Disease Markers, vol. 22, no. 1-2, pp. 95–102, 2006.
[10]  A. Nunomura, G. Perry, G. Aliev et al., “Oxidative damage is the earliest event in Alzheimer disease,” Journal of Neuropathology and Experimental Neurology, vol. 60, no. 8, pp. 759–767, 2001.
[11]  W. J. Koopman, L. G. Nijtmans, C. E. Dieteren et al., “Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation,” Antioxidants and Redox Signaling, vol. 12, no. 12, pp. 1431–1470, 2010.
[12]  J. A. Doorn and D. R. Petersen, “Covalent adduction of nucleophilic amino acids by 4-hydroxynonenal and 4-oxononenal,” Chemico-Biological Interactions, vol. 143-144, pp. 93–100, 2003.
[13]  X. Zhu, B. Su, X. Wang, M. A. Smith, and G. Perry, “Causes of oxidative stress in Alzheimer disease,” Cellular and Molecular Life Sciences, vol. 64, no. 17, pp. 2202–2210, 2007.
[14]  A. Valavanidis, T. Vlachogianni, and C. Fiotakis, “8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis,” Journal of Environmental Science and Health C, vol. 27, no. 2, pp. 120–139, 2009.
[15]  H. E. Poulsen, E. Specht, K. Broedbaek et al., “RNA modifications by oxidation: a novel disease mechanism?” Free Radical Biology and Medicine, vol. 52, no. 8, pp. 1353–1361, 2012.
[16]  Q. Ding, W. R. Markesbery, Q. Chen, F. Li, and J. N. Keller, “Ribosome dysfunction is an early event in Alzheimer's disease,” Journal of Neuroscience, vol. 25, no. 40, pp. 9171–9175, 2005.
[17]  G. L. Milne, E. S. Musiek, and J. D. Morrow, “F2-isoprostanes as markers of oxidative stress in vivo: an overview,” Biomarkers, vol. 10, supplement 1, pp. S10–S23, 2005.
[18]  T. Liu, A. Stern, L. J. Roberts, and J. D. Morrow, “The isoprostanes: novel prostaglandin-like products of the free radical- catalyzed peroxidation of arachidonic acid,” Journal of Biomedical Science, vol. 6, no. 4, pp. 226–235, 1999.
[19]  H. A. Headlam and M. J. Davies, “Markers of protein oxidation: different oxidants give rise to variable yields of bound and released carbonyl products,” Free Radical Biology and Medicine, vol. 36, no. 9, pp. 1175–1184, 2004.
[20]  N. L. Alderson, Y. Wang, M. Blatnik et al., “S-(2-Succinyl)cysteine: a novel chemical modification of tissue proteins by a Krebs cycle intermediate,” Archives of Biochemistry and Biophysics, vol. 450, no. 1, pp. 1–8, 2006.
[21]  J. Zeng and M. J. Davies, “Evidence for the formation of adducts and S-(carboxymethyl)cysteine on reaction of α-dicarbonyl compounds with thiol groups on amino acids, peptides, and proteins,” Chemical Research in Toxicology, vol. 18, no. 8, pp. 1232–1241, 2005.
[22]  B. S. Berlett and E. R. Stadtman, “Protein oxidation in aging, disease, and oxidative stress,” Journal of Biological Chemistry, vol. 272, no. 33, pp. 20313–20316, 1997.
[23]  C. Ricci, V. Pastukh, J. Leonard et al., “Mitochondrial DNA damage triggers mitochondrial-superoxide generation and apoptosis,” The American Journal of Physiology—Cell Physiology, vol. 294, no. 2, pp. C413–C422, 2008.
[24]  M. Saitoh, H. Nishitoh, M. Fujii et al., “Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1,” EMBO Journal, vol. 17, no. 9, pp. 2596–2606, 1998.
[25]  P. J. Nadeau, S. J. Charette, M. B. Toledano, and J. Landry, “Disulfide bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H2O2-induced c-Jun NH2-terminal kinase activation and apoptosis,” Molecular Biology of the Cell, vol. 18, no. 10, pp. 3903–3913, 2007.
[26]  H. Yamamoto, T. Ozaki, M. Nakanishi et al., “Oxidative stress induces p53-dependent apoptosis in hepatoblastoma cell through its nuclear translocation,” Genes to Cells, vol. 12, no. 4, pp. 461–471, 2007.
[27]  M. A. Bradley, S. Xiong-Fister, W. R. Markesbery, and M. A. Lovell, “Elevated 4-hydroxyhexenal in Alzheimer's disease (AD) progression,” Neurobiology of Aging, vol. 33, no. 6, pp. 1034–1044, 2012.
[28]  W. R. Markesbery, R. J. Kryscio, M. A. Lovell, and J. D. Morrow, “Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment,” Annals of Neurology, vol. 58, no. 5, pp. 730–735, 2005.
[29]  D. Praticò, V. M. Lee, J. Q. Trojanowski, J. Rokach, and G. A. Fitzgerald, “Increased F2-isoprostanes in Alzheimer's disease: evidence for enhanced lipid peroxidation in vivo,” The FASEB Journal, vol. 12, no. 15, pp. 1777–1783, 1998.
[30]  M. A. Lovell, C. Xie, and W. R. Markesbery, “Acrolein is increased in Alzheimer's disease brain and is toxic to primary hippocampal cultures,” Neurobiology of Aging, vol. 22, no. 2, pp. 187–194, 2001.
[31]  B. Kuhla, C. Haase, K. Flach, H.-J. Lüth, T. Arendt, and G. Münch, “Effect of pseudophosphorylation and cross-linking by lipid peroxidation and advanced glycation end product precursors on tau aggregation and filament formation,” Journal of Biological Chemistry, vol. 282, no. 10, pp. 6984–6991, 2007.
[32]  M. A. Lovell, S. Soman, and M. A. Bradley, “Oxidatively modified nucleic acids in preclinical Alzheimer's disease (PCAD) brain,” Mechanisms of Ageing and Development, vol. 132, no. 8-9, pp. 443–448, 2011.
[33]  P. Mecocci, U. MacGarvey, and M. F. Beal, “Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease,” Annals of Neurology, vol. 36, no. 5, pp. 747–751, 1994.
[34]  J. Wang, S. Xiong, C. Xie, W. R. Markesbery, and M. A. Lovell, “Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer's disease,” Journal of Neurochemistry, vol. 93, no. 4, pp. 953–962, 2005.
[35]  K. Hensley, N. Hall, R. Subramaniam et al., “Brain regional correspondence between Alzheimer's disease histopathology and biomarkers of protein oxidation,” Journal of Neurochemistry, vol. 65, no. 5, pp. 2146–2156, 1995.
[36]  M. A. Ansari and S. W. Scheff, “Oxidative stress in the progression of alzheimer disease in the frontal cortex,” Journal of Neuropathology and Experimental Neurology, vol. 69, no. 2, pp. 155–167, 2010.
[37]  T. J. Montine, M. F. Beal, M. E. Cudkowicz et al., “Increased CSF F2-isoprostane concentration in probable AD,” Neurology, vol. 52, no. 3, pp. 562–565, 1999.
[38]  M. A. Lovell, S. P. Gabbita, and W. R. Markesbery, “Increased DNA oxidation and decreased levels of repair products in Alzheimer's disease ventricular CSF,” Journal of Neurochemistry, vol. 72, no. 2, pp. 771–776, 1999.
[39]  N. Ahmed, U. Ahmed, P. J. Thornalley, K. Hager, G. Fleischer, and G. Münch, “Protein glycation, oxidation and nitration adduct residues and free adducts of cerebrospinal fluid in Alzheimer's disease and link to cognitive impairment,” Journal of Neurochemistry, vol. 92, no. 2, pp. 255–263, 2005.
[40]  J. Greilberger, C. Koidl, M. Greilberger et al., “Malondialdehyde, carbonyl proteins and albumin-disulphide as useful oxidative markers in mild cognitive impairment and Alzheimer's disease,” Free Radical Research, vol. 42, no. 7, pp. 633–638, 2008.
[41]  F. Sinem, K. Dildar, E. G?khan, B. Melda, Y. Orhan, and M. Filiz, “The serum protein and lipid oxidation marker levels in Alzheimer's disease and effects of cholinesterase inhibitors and antipsychotic drugs therapy,” Current Alzheimer Research, vol. 7, no. 5, pp. 463–469, 2010.
[42]  M. C. Irizarry, Y. Yao, B. T. Hyman, J. H. Growdon, and D. Praticò, “Plasma F2A isoprostane levels in Alzheimer's and Parkinson's disease,” Neurodegenerative Diseases, vol. 4, no. 6, pp. 403–405, 2007.
[43]  T. J. Montine, J. F. Quinn, D. Milatovic et al., “Peripheral F2-isoprostanes and F4-neuroprostanes are not increased in Alzheimer's disease,” Annals of Neurology, vol. 52, no. 2, pp. 175–179, 2002.
[44]  E. Kadioglu, S. Sardas, S. Aslan, E. Isik, and A. E. Karakaya, “Detection of oxidative DNA damage in lymphocytes of patients with Alzheimer's disease,” Biomarkers, vol. 9, no. 2, pp. 203–209, 2004.
[45]  L. Migliore, I. Fontana, F. Trippi et al., “Oxidative DNA damage in peripheral leukocytes of mild cognitive impairment and AD patients,” Neurobiology of Aging, vol. 26, no. 5, pp. 567–573, 2005.
[46]  T. Abe, H. Tohgi, C. Isobe, T. Murata, and C. Sato, “Remarkable increase in the concentration of 8-hydroxyguanosine in cerebrospinal fluid from patients with Alzheimer's disease,” Journal of Neuroscience Research, vol. 70, no. 3, pp. 447–450, 2002.
[47]  R. Resende, P. I. Moreira, T. Proen?a et al., “Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease,” Free Radical Biology and Medicine, vol. 44, no. 12, pp. 2051–2057, 2008.
[48]  M. Bélanger, I. Allaman, and P. J. Magistretti, “Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation,” Cell Metabolism, vol. 14, no. 6, pp. 724–738, 2011.
[49]  J. R. Marszalek and H. F. Lodish, “Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breastmilk and fish are good for you,” Annual Review of Cell and Developmental Biology, vol. 21, pp. 633–657, 2005.
[50]  S. S. Karuppagounder, H. Xu, Q. Shi et al., “Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer's mouse model,” Neurobiology of Aging, vol. 30, no. 10, pp. 1587–1600, 2009.
[51]  J. W. Lustbader, M. Cirilli, C. Lin et al., “ABAD directly links Aβ to mitochondrial toxicity in Alzheimer's disease,” Science, vol. 304, no. 5669, pp. 448–452, 2004.
[52]  K. Takuma, J. Yao, J. Huang et al., “ABAD enhances Aβ-induced cell stress via mitochondrial dysfunction,” The FASEB Journal, vol. 19, no. 6, pp. 597–598, 2005.
[53]  S. Akterin, R. F. Cowburn, A. Miranda-Vizuete et al., “Involvement of glutaredoxin-1 and thioredoxin-1 in β-amyloid toxicity and Alzheimer's disease,” Cell Death and Differentiation, vol. 13, no. 9, pp. 1454–1465, 2006.
[54]  G. Cenini, R. Sultana, M. Memo, and D. A. Butterfield, “Elevated levels of pro-apoptotic p53 and its oxidative modification by the lipid peroxidation product, HNE,in brain from subjects with amnestic mild cognitive impairment and Alzheimer's disease,” Journal of Cellular and Molecular Medicine, vol. 12, no. 3, pp. 987–994, 2008.
[55]  A. Sharma, R. Sharma, P. Chaudhary et al., “4-Hydroxynonenal induces p53-mediated apoptosis in retinal pigment epithelial cells,” Archives of Biochemistry and Biophysics, vol. 480, no. 2, pp. 85–94, 2008.
[56]  C. Ramassamy, D. Averill, U. Beffert et al., “Oxidative insults are associated with apolipoprotein E genotype in Alzheimer's disease brain,” Neurobiology of Disease, vol. 7, no. 1, pp. 23–37, 2000.
[57]  L. Glodzik-Sobanska, E. Pirraglia, M. Brys et al., “The effects of normal aging and ApoE genotype on the levels of CSF biomarkers for Alzheimer's disease,” Neurobiology of Aging, vol. 30, no. 5, pp. 672–681, 2009.
[58]  M. Miyata and J. D. Smith, “Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and β-amyloid peptides,” Nature Genetics, vol. 14, no. 1, pp. 55–61, 1996.
[59]  G. Benzi and A. Moretti, “Age- and peroxidative stress-related modifications of the cerebral enzymatic activities linked to mitochondria and the glutathione system,” Free Radical Biology and Medicine, vol. 19, no. 1, pp. 77–101, 1995.
[60]  V. Calabrese, R. Sultana, G. Scapagnini et al., “Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer's disease,” Antioxidants and Redox Signaling, vol. 8, no. 11-12, pp. 1975–1986, 2006.
[61]  R. Sultana, M. Piroddi, F. Galli, and D. A. Butterfield, “Protein levels and activity of some antioxidant enzymes in hippocampus of subjects with amnestic mild cognitive impairment,” Neurochemical Research, vol. 33, no. 12, pp. 2540–2546, 2008.
[62]  S. L. Duffy, J. Lagopoulos, I. B. Hickie et al., “Glutathione relates to neuropsychological functioning in mild cognitive impairment,” Alzheimer's and Dement, 2013.
[63]  M. C. Puertas, J. M. Martínez-Martos, M. P. Cobo, M. P. Carrera, M. D. Mayas, and M. J. Ramírez-Expósito, “Plasma oxidative stress parameters in men and women with early stage Alzheimer type dementia,” Experimental Gerontology, vol. 47, no. 8, pp. 625–630, 2012.
[64]  P. Rinaldi, M. C. Polidori, A. Metastasio et al., “Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer's disease,” Neurobiology of Aging, vol. 24, no. 7, pp. 915–919, 2003.
[65]  M. Padurariu, A. Ciobica, L. Hritcu, B. Stoica, W. Bild, and C. Stefanescu, “Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer's disease,” Neuroscience Letters, vol. 469, no. 1, pp. 6–10, 2010.
[66]  C. Berr, M.-J. Richard, V. Gourlet, C. Garrel, and A. Favier, “Enzymatic antioxidant balance and cognitive decline in aging—the EVA study,” European Journal of Epidemiology, vol. 19, no. 2, pp. 133–138, 2004.
[67]  M. Loef, G. N. Schrauzer, and H. Walach, “Selenium and Alzheimer's disease: a systematic review,” Journal of Alzheimer's Disease, vol. 26, no. 1, pp. 81–104, 2011.
[68]  R. Brigelius-Flohé and M. G. Traber, “Vitamin E: function and metabolism,” The FASEB Journal, vol. 13, no. 10, pp. 1145–1155, 1999.
[69]  I. Baldeiras, I. Santana, M. T. Proen?a et al., “Peripheral oxidative damage in mild cognitive impairment and mild Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 15, no. 1, pp. 117–128, 2008.
[70]  F. Mangialasche, W. Xu, M. Kivipelto et al., “Tocopherols and tocotrienols plasma levels are associated with cognitive impairment,” Neurobiology of Aging, vol. 33, no. 10, pp. 2282–2290, 2012.
[71]  F. J. Jiménez-Jiménez, F. de Bustos, J. A. Molina et al., “Cerebrospinal fluid levels of alpha-tocopherol (vitamin E) in Alzheimer's disease,” Journal of Neural Transmission, vol. 104, no. 6-7, pp. 703–710, 1997.
[72]  F. Mangialasche, M. Kivipelto, P. Mecocci et al., “High plasma levels of vitamin E forms and reduced Alzheimer's disease risk in advanced age,” Journal of Alzheimer's Disease, vol. 20, no. 4, pp. 1029–1037, 2010.
[73]  C. A. von Arnim, F. Herbolsheimer, T. Nikolaus et al., “Dietary antioxidants and dementia in a population-based case-control study among older people in South Germany,” Journal of Alzheimer's Disease, vol. 31, pp. 717–724, 2012.
[74]  N. T. Akbaraly, I. Hininger-Favier, I. Carrière et al., “Plasma selenium over time and cognitive decline in the elderly,” Epidemiology, vol. 18, no. 1, pp. 52–58, 2007.
[75]  U. Schweizer, F. Streckfu?, P. Pelt et al., “Hepatically derived selenoprotein P is a key factor for kidney but not for brain selenium supply,” Biochemical Journal, vol. 386, no. 2, pp. 221–226, 2005.
[76]  M. A. Lovell, C. S. Xie, S. P. Gabbita, and W. R. Markesbery, “Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer's disease brain,” Free Radical Biology and Medicine, vol. 28, no. 3, pp. 418–427, 2000.
[77]  F. Gil-Bea, S. Akterin, T. R. Persson et al., “Thioredoxin-80 is a product of alpha-secretase cleavage that inhibits amyloid-beta aggregation and is decreased in Alzheimer's disease brain,” EMBO Molecular Medicine, vol. 4, no. 10, pp. 1097–1111, 2012.
[78]  K. Pekkari and A. Holmgren, “Truncated Thioredoxin: hysiological functions and mechanism,” Antioxidants and Redox Signaling, vol. 6, no. 1, pp. 53–61, 2004.
[79]  L. L. Torres, N. B. Quaglio, G. T. de Souza et al., “Peripheral oxidative stress biomarkers in mild cognitive impairment and alzheimer's disease,” Journal of Alzheimer's Disease, vol. 26, no. 1, pp. 59–68, 2011.
[80]  M.-X. Tang, D. Jacobs, Y. Stern et al., “Effect of oestrogen during menopause on risk and age at onset of Alzheimer's disease,” The Lancet, vol. 348, no. 9025, pp. 429–432, 1996.
[81]  P. Sch?nknecht, J. Pantel, K. Klinga et al., “Reduced cerebrospinal fluid estradiol levels are associated with increased β-amyloid levels in female patients with Alzheimer's disease,” Neuroscience Letters, vol. 307, no. 2, pp. 122–124, 2001.
[82]  L. Mateos, T. Persson, S. Katoozi, F. J. Gil-Bea, and A. Cedazo-Minguez, “Estrogen protects against amyloid-beta toxicity by estrogen receptor alpha-mediated inhibition of Daxx translocation,” Neuroscience Letters, vol. 506, no. 2, pp. 245–250, 2012.
[83]  A. Cedazo-Mínguez and R. F. Cowburn, “Apolipoprotein E isoform-specific disruption of phosphoinositide hydrolysis: protection by estrogen and glutathione,” FEBS Letters, vol. 504, no. 1-2, pp. 45–49, 2001.
[84]  S. Arlt, T. Müller-Thomsen, U. Beisiegel, and A. Kontush, “Effect of one-year vitamin C- and E-supplementation on cerebrospinal fluid oxidation parameters and clinical course in Alzheimer's disease,” Neurochemical Research, vol. 37, no. 12, pp. 2706–2714, 2012.
[85]  D. R. Galasko, E. Peskind, C. M. Clark et al., “Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures,” Archives of Neurology, vol. 69, no. 7, pp. 836–841, 2012.
[86]  M. Tolonen, M. Halme, and S. Sarna, “Vitamin E and selenium supplementation in geriatric patients,” Biological Trace Element Research, vol. 7, no. 3, pp. 161–168, 1985.
[87]  R. J. Kryscio, E. L. Abner, F. A. Schmitt et al., “A randomized controlled Alzheimer's disease prevention trial's evolution into an exposure trial: the preadvise Trial,” The journal of Nutrition, Health and Aging, vol. 17, no. 1, pp. 72–75, 2013.
[88]  A. C. Reddy and B. R. Lokesh, “Studies on spice principles as antioxidants in the inhibition of lipid peroxidation of rat liver microsomes,” Molecular and Cellular Biochemistry, vol. 111, no. 1-2, pp. 117–124, 1992.
[89]  K. Ono, K. Hasegawa, H. Naiki, and M. Yamada, “Curcumin has potent anti-amyloidogenic effects for Alzheimer's β-amyloid fibrils in vitro,” Journal of Neuroscience Research, vol. 75, no. 6, pp. 742–750, 2004.
[90]  A. N. Begum, M. R. Jones, G. P. Lim et al., “Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer's disease,” Journal of Pharmacology and Experimental Therapeutics, vol. 326, no. 1, pp. 196–208, 2008.
[91]  Q.-L. Ma, F. Yang, E. R. Rosario et al., “β-Amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin,” Journal of Neuroscience, vol. 29, no. 28, pp. 9078–9089, 2009.
[92]  L. Baum, C. W. K. Lam, S. K.-K. Cheung et al., “Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease,” Journal of Clinical Psychopharmacology, vol. 28, no. 1, pp. 110–113, 2008.
[93]  J. M. Ringman, S. A. Frautschy, E. Teng et al., “Oral curcumin for Alzheimer's disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study,” Alzheimer's Research and Therapy, vol. 4, no. 5, p. 43, 2012.
[94]  R. A. Disilvestro, E. Joseph, S. Zhao, and J. Bomser, “Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people,” Nutrition Journal, vol. 11, article 79, 2012.
[95]  R. Bridi, F. P. Crossetti, V. M. Steffen, and A. T. Henriques, “The antioxidant activity of standardized extract of Ginkgo biloba (EGb 761) in rats,” Phytotherapy Research, vol. 15, no. 5, pp. 449–451, 2001.
[96]  B. E. Snitz, E. S. O'Meara, M. C. Carlson et al., “Ginkgo biloba for preventing cognitive decline in older adults a randomized trial,” Journal of the American Medical Association, vol. 302, no. 24, pp. 2663–2670, 2009.
[97]  B. Vellas, N. Coley, P. J. Ousset, et al., “Long-term use of standardised ginkgo biloba extract for the prevention of Alzheimer's disease (GuidAge): a randomised placebo-controlled trial,” The Lancet Neurology, vol. 11, no. 10, pp. 851–859, 2012.
[98]  A. Chan, R. Remington, E. Kotyla, A. Lepore, J. Zemianek, and T. B. Shea, “A Vitamin/nutriceutical formulation improves memory and cognitive performance in community-dwelling adults without dementia,” Journal of Nutrition, Health and Aging, vol. 14, no. 3, pp. 224–230, 2010.
[99]  H. R. D. Dolatabadi, P. Reisi, H. Alaei, H. A. Malekabadi, and A. A. Pilehvarian, “Folic acid and coenzyme Q10 ameliorate cognitive dysfunction in the rats with intracerebroventricular injection of streptozotocin,” Iranian Journal of Basic Medical Sciences, vol. 15, no. 2, pp. 719–724, 2012.
[100]  L. K. Kwong, S. Kamzalov, I. Rebrin et al., “Effects of coenzyme Q10 administration on its tissue concentrations, mitochondrial oxidant generation, and oxidative stress in the rat,” Free Radical Biology and Medicine, vol. 33, no. 5, pp. 627–638, 2002.
[101]  L. J. Thal, M. Grundman, J. Berg et al., “Idebenone treatment fails to slow cognitive decline in Alzheimer's disease,” Neurology, vol. 61, no. 11, pp. 1498–1502, 2003.
[102]  C. Lu, D. Zhang, M. Whiteman, and J. S. Armstrong, “Is antioxidant potential of the mitochondrial targeted ubiquinone derivative MitoQ conserved in cells lacking mtDNA?” Antioxidants and Redox Signaling, vol. 10, no. 3, pp. 651–660, 2008.
[103]  R. A. Mulnard, C. W. Cotman, C. Kawas et al., “Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial,” The Journal of the American Medical Association, vol. 283, no. 8, pp. 1007–1015, 2000.
[104]  M. Janusz and J. Lisowski, “Proline-rich polypeptide (PRP)–an immunomodulatory peptide from ovine colostrum,” Archivum Immunologiae et Therapiae Experimentalis, vol. 41, no. 5-6, pp. 275–279, 1993.
[105]  I. Boldogh, D. Liebenthal, T. K. Hughes et al., “Modulation of 4HNE-mediated signaling by proline-rich peptides from ovine colostrum,” Journal of Molecular Neuroscience, vol. 20, no. 2, pp. 125–134, 2003.
[106]  A. Zab?ocka and M. Janusz, “Effect of the proline-rich polypeptide complex/colostrininTM on the enzymatic antioxidant system,” Archivum Immunologiae et Therapiae Experimentalis, vol. 60, no. 5, pp. 383–390, 2012.
[107]  J. Leszek, A. D. Inglot, M. Janusz et al., “Colostrinin proline-rich polypeptide complex from ovine colostrum—a long-term study of its efficacy in Alzheimer's disease,” Medical Science Monitor, vol. 8, no. 10, pp. PI93–PI96, 2002.
[108]  A. Bilikiewicz and W. Gaus, “Colostrinin1 (a naturally occuring, proline-rich, polypeptide mixture) in the treatment of Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 6, no. 1, pp. 17–26, 2004.
[109]  H. Misonou, M. Morishima-Kawashima, and Y. Ihara, “Oxidative stress induces intracellular accumulation of amyloid β- protein (Aβ) in human neuroblastoma cells,” Biochemistry, vol. 39, no. 23, pp. 6951–6959, 2000.
[110]  D. Paola, C. Domenicotti, M. Nitti et al., “Oxidative stress induces increase in intracellular amyloid β-protein production and selective activation of βI and βII PKCs in NT2 cells,” Biochemical and Biophysical Research Communications, vol. 268, no. 2, pp. 642–646, 2000.
[111]  C. Shen, Y. Chen, H. Liu et al., “Hydrogen peroxide promotes Aβ production through JNK-dependent activation of γ-secretase,” Journal of Biological Chemistry, vol. 283, no. 25, pp. 17721–17730, 2008.
[112]  A. Terada, M. Yoshida, Y. Seko et al., “Active oxygen species generation and cellular damage by additives of parenteral preparations: selenium and sulfhydryl compounds,” Nutrition, vol. 15, no. 9, pp. 651–655, 1999.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413