全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Senescence-Related Changes in Gene Expression of Peripheral Blood Mononuclear Cells from Octo/Nonagenarians Compared to Their Offspring

DOI: 10.1155/2013/189129

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mechanisms determining both functional rate of decline and the time of onset in aging remain elusive. Studies of the aging process especially those involving the comparison of long-lived individuals and young controls are fairly limited. Therefore, this research aims to determine the differential gene expression profile in related individuals from villages in Pahang, Malaysia. Genome-wide microarray analysis of 18 samples of peripheral blood mononuclear cells (PBMCs) from two groups: octo/nonagenarians (80–99 years old) and their offspring ( years old) revealed that 477 transcripts were age-induced and 335 transcripts were age-repressed with fold changes ≥1.2 in octo/nonagenarians compared to offspring. Interestingly, changes in gene expression were associated with increased capacity for apoptosis (BAK1), cell cycle regulation (CDKN1B), metabolic process (LRPAP1), insulin action (IGF2R), and increased immune and inflammatory response (IL27RA), whereas response to stress (HSPA8), damage stimulus (XRCC6), and chromatin remodelling (TINF2) pathways were downregulated in octo/nonagenarians. These results suggested that systemic telomere maintenance, metabolism, cell signalling, and redox regulation may be important for individuals to maintain their healthy state with advancing age and that these processes play an important role in the determination of the healthy life-span. 1. Introduction The aging process determined by genetic and environmental factors remains unchanged despite increasing the average life-span of the general population in recent decades [1]. The heritability component of human longevity ranged from 20% to 30% and can increase to about 50% after the age of 60 [2]. Thus, the search for genes affecting longevity in humans was mostly conducted on subjects at an advanced age involving centenarians. Families living such extremely long lives perhaps possess genetic variations that affect either the rate of aging or genes that result in decreased susceptibility to age-associated diseases [1]. Identification of innate genes that changes in expression with age, in a small population to minimize variations arising from environmental factors such as diet and lifestyle, can be useful as targets for intervention or can be used as biomarkers of aging. Uncovering interactions of major regulatory pathways and targets is crucial to elucidate aging mechanisms. Some of the most promising candidate genes appear to be involved in regulatory pathways such as stress resistance, immune/inflammatory response, insulin signalling, or cardiovascular function. Such

References

[1]  T. Flatt and P. S. Schmidt, “Integrating evolutionary and molecular genetics of aging,” Biochimica et Biophysica Acta, vol. 1790, no. 10, pp. 951–962, 2009.
[2]  D. Karasik, S. Demissie, L. A. Cupples, and D. P. Kiel, “Disentangling the genetic determinants of human aging: biological age as an alternative to the use of survival measures,” Journals of Gerontology. Series A, vol. 60, no. 5, pp. 574–587, 2005.
[3]  T. K. D. Vo, P. Godard, M. de Saint-Hubert et al., “Transcriptomic biomarkers of human ageing in peripheral blood mononuclear cell total RNA,” Experimental Gerontology, vol. 45, no. 3, pp. 188–194, 2010.
[4]  W. M. Passtoors, M. Beekman, D. Gunn et al., “Genomic studies in ageing research: the need to integrate genetic and gene expression approaches,” Journal of Internal Medicine, vol. 263, no. 2, pp. 153–166, 2008.
[5]  D. Avramopoulos, M. Szymanski, R. Wang, and S. Bassett, “Gene expression reveals overlap between normal aging and Alzheimer's disease genes,” Neurobiology of Aging, vol. 32, no. 12, pp. e27–e34, 2011.
[6]  J. A. Duce, S. Podvin, W. Hollander, D. Kipling, D. L. Rosene, and C. R. Abraham, “Gene profile analysis implicates Klotho as an important contributor to aging changes in brain white matter of the rhesus monkey,” Glia, vol. 56, no. 1, pp. 106–117, 2008.
[7]  S. Welle, A. I. Brooks, J. M. Delehanty et al., “Skeletal muscle gene expression profiles in 20–29 year old and 65–71 year old women,” Experimental Gerontology, vol. 39, no. 3, pp. 369–377, 2004.
[8]  R. Tacutu, T. Craig, A. Budovsky et al., “Human Ageing Genomic Resources: integrated databases and tools for the biology and genetics of ageing,” Nucleic Acids Research, vol. 41, no. D1, pp. D1027–D1033, 2013.
[9]  H. M. Brown-Borg, W. T. Johnson, and S. G. Rakoczy, “Expression of oxidative phosphorylation components in mitochondria of long-living Ames dwarf mice,” Age, vol. 34, no. 1, pp. 43–57, 2012.
[10]  J. P. de Magalh?es, J. Curado, and G. M. Church, “Meta-analysis of age-related gene expression profiles identifies common signatures of aging,” Bioinformatics, vol. 25, no. 7, pp. 875–881, 2009.
[11]  G. Zuliani, M. Galvani, M. Maggio et al., “Plasma soluble gp130 levels are increased in older subjects with metabolic syndrome. The role of insulin resistance,” Atherosclerosis, vol. 213, no. 1, pp. 319–324, 2010.
[12]  J. D. Walston, A. M. Matteini, C. Nievergelt et al., “Inflammation and stress-related candidate genes, plasma interleukin-6 levels, and longevity in older adults,” Experimental Gerontology, vol. 44, no. 5, pp. 350–355, 2009.
[13]  J. Jylh?v?, C. Eklund, M. Jylh?, A. Hervonen, and M. Hurme, “Expression profiling of immune-associated genes in peripheral blood mononuclear cells reveals baseline differences in co-stimulatory signalling between nonagenarians and younger controls: the vitality 90+ study,” Biogerontology, vol. 11, no. 6, pp. 671–677, 2010.
[14]  N. C. Ni, D. Yan, L. L. Ballantyne et al., “A selective cysteinyl leukotriene receptor 2 antagonist blocks myocardial ischemia/reperfusion injury and vascular permeability in mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 339, no. 3, pp. 768–778, 2011.
[15]  C. Feig and M. E. Peter, “How apoptosis got the immune system in shape,” European Journal of Immunology, vol. 37, supplement 1, pp. S61–S70, 2007.
[16]  C. Colotti, G. Cavallini, R. L. Vitale et al., “Effects of aging and anti-aging caloric restrictions on carbonyl and heat shock protein levels and expression,” Biogerontology, vol. 6, no. 6, pp. 397–406, 2005.
[17]  J. Z. He, J. J. D. Ho, S. Gingerich, D. W. Courtman, P. A. Marsden, and M. E. Ward, “Enhanced translation of heme oxygenase-2 preserves human endothelial cell viability during hypoxia,” The Journal of Biological Chemistry, vol. 285, no. 13, pp. 9452–9461, 2010.
[18]  S. N. Radyuk, K. Michalak, V. I. Klichko et al., “Peroxiredoxin 5 confers protection against oxidative stress and apoptosis and also promotes longevity in Drosophila,” Biochemical Journal, vol. 419, no. 2, pp. 437–445, 2009.
[19]  M. Oláhová, S. R. Taylor, S. Khazaipoul et al., “A redox-sensitive peroxiredoxin that is important for longevity has tissue- and stress-specific roles in stress resistance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 50, pp. 19839–19844, 2008.
[20]  S.-R. Ho, K. Wang, T. R. Whisenhunt et al., “O-GlcNAcylation enhances FOXO4 transcriptional regulation in response to stress,” FEBS Letters, vol. 584, no. 1, pp. 49–54, 2010.
[21]  D. F. Terry, D. F. Wyszynski, V. G. Nolan et al., “Serum heat shock protein 70 level as a biomarker of exceptional longevity,” Mechanisms of Ageing and Development, vol. 127, no. 11, pp. 862–868, 2006.
[22]  Y.-J. Ju, K.-H. Lee, J.-E. Park et al., “Decreased expression of DNA repair proteins Ku70 and Mre11 is associated with aging and may contribute to the cellular senescence,” Experimental and Molecular Medicine, vol. 38, no. 6, pp. 686–693, 2006.
[23]  P. Martinez and M. A. Blasco, “Role of shelterin in cancer and aging,” Aging Cell, vol. 9, no. 5, pp. 653–666, 2010.
[24]  A. Saharia, D. C. Teasley, J. P. Duxin, B. Dao, K. B. Chiappinelli, and S. A. Stewart, “FEN1 ensures telomere stability by facilitating replication fork re-initiation,” The Journal of Biological Chemistry, vol. 285, no. 35, pp. 27057–27066, 2010.
[25]  G. E. Lee, E. Y. Yu, C. H. Cho, J. Lee, M. T. Muller, and I. K. Chung, “DNA-protein kinase catalytic subunit-interacting protein KIP binds telomerase by interacting with human telomerase reverse transcriptase,” The Journal of Biological Chemistry, vol. 279, no. 33, pp. 34750–34755, 2004.
[26]  P. Dekker, M. J. de Lange, R. W. Dirks et al., “Relation between maximum replicative capacity and oxidative stress-induced responses in human skin fibroblasts in vitro,” Journals of Gerontology. Series A, vol. 66, no. 1, pp. 45–50, 2011.
[27]  S. Salvioli, M. Capri, A. Santoro et al., “The impact of mitochondrial DNA on human lifespan: a view from studies on centenarians,” Biotechnology Journal, vol. 3, no. 6, pp. 740–749, 2008.
[28]  N. Alic, T. D. Andrews, M. E. Giannakou et al., “Genome-wide dFOXO targets and topology of the transcriptomic response to stress and insulin signalling,” Molecular Systems Biology, vol. 7, article 502, 2011.
[29]  M. Barbieri, M. R. Rizzo, D. Manzella et al., “Glucose regulation and oxidative stress in healthy centenarians,” Experimental Gerontology, vol. 38, no. 1-2, pp. 137–143, 2003.
[30]  J. E. Puche and I. Castilla-Cortazar, “Human conditions of insulin-like growth factor-I (IGF-I) deficiency,” Journal of Translational Medicine, vol. 10, article 224, 2012.
[31]  C. Zhang, T. Yang, J. Wang, G. Liu, and Q. Chen, “The Chinese traditional medicine ‘Bushen Yinao Pian’ increased the level of ageing-related gene LRPAP-1 expression in the cerebral tissue of accelerated senescence-prone mouse 8/Ta,” Journal of Ethnopharmacology, vol. 98, no. 1-2, pp. 61–65, 2005.
[32]  D. Mauvoisin and C. Mounier, “Hormonal and nutritional regulation of SCD1 gene expression,” Biochimie, vol. 93, no. 1, pp. 78–86, 2011.
[33]  E. Ford, R. Voit, G. Liszt, C. Magin, I. Grummt, and L. Guarente, “Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription,” Genes and Development, vol. 20, no. 9, pp. 1075–1080, 2006.
[34]  A. P. Reiner, C. S. Carlson, N. S. Jenny et al., “USF1 gene variants, cardiovascular risk, and mortality in European Americans: analysis of two US cohort studies,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 12, pp. 2736–2742, 2007.
[35]  R. C. Scarpulla, “Transcriptional paradigms in mammalian mitochondrial biogenesis and function,” Physiological Reviews, vol. 88, no. 2, pp. 611–638, 2008.
[36]  T. W. Kensler, N. Wakabayashi, and S. Biswal, “Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway,” Annual Review of Pharmacology and Toxicology, vol. 47, pp. 89–116, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413